{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Install Dependencies" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# !pip install -q torchaudio\n", "SAMPLING_RATE = 16000\n", "import torch\n", "from pprint import pprint\n", "\n", "torch.set_num_threads(1)\n", "NUM_PROCESS=4 # set to the number of CPU cores in the machine\n", "NUM_COPIES=8\n", "# download wav files, make multiple copies\n", "for idx in range(NUM_COPIES):\n", " torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', f\"en_example{idx}.wav\")\n" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Load VAD model from torch hub" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n", " model='silero_vad',\n", " force_reload=True,\n", " onnx=False)\n", "\n", "(get_speech_timestamps,\n", "save_audio,\n", "read_audio,\n", "VADIterator,\n", "collect_chunks) = utils" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Define a vad process function" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import multiprocessing\n", "\n", "vad_models = dict()\n", "\n", "def init_model(model):\n", " pid = multiprocessing.current_process().pid\n", " model, _ = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n", " model='silero_vad',\n", " force_reload=False,\n", " onnx=False)\n", " vad_models[pid] = model\n", "\n", "def vad_process(audio_file: str):\n", " \n", " pid = multiprocessing.current_process().pid\n", " \n", " with torch.no_grad():\n", " wav = read_audio(audio_file, sampling_rate=SAMPLING_RATE)\n", " return get_speech_timestamps(\n", " wav,\n", " vad_models[pid],\n", " 0.46, # speech prob threshold\n", " 16000, # sample rate\n", " 300, # min speech duration in ms\n", " 20, # max speech duration in seconds\n", " 600, # min silence duration\n", " 512, # window size\n", " 200, # spech pad ms\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Parallelization" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from concurrent.futures import ProcessPoolExecutor, as_completed\n", "\n", "futures = []\n", "\n", "with ProcessPoolExecutor(max_workers=NUM_PROCESS, initializer=init_model, initargs=(model,)) as ex:\n", " for i in range(NUM_COPIES):\n", " futures.append(ex.submit(vad_process, f\"en_example{idx}.wav\"))\n", "\n", "for finished in as_completed(futures):\n", " pprint(finished.result())" ] } ], "metadata": { "kernelspec": { "display_name": "diarization", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 2 }