"
- ]
- },
- "execution_count": 60,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import IPython.display as ipd\n",
- "import numpy as np\n",
- "import random\n",
- "\n",
- "rand_int = random.randint(0, len(common_voice_train)-1)\n",
- "\n",
- "print(common_voice_train[rand_int][\"sentence\"])\n",
- "ipd.Audio(data=common_voice_train[rand_int][\"audio\"][\"array\"], autoplay=True, rate=16000)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "gY8m3vARHYTa"
- },
- "source": [
- "It seems like the data is now correctly loaded and resampled."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "1MaL9J2dNVtG"
- },
- "source": [
- "It can be heard, that the speakers change along with their speaking rate, accent, and background environment, etc. Overall, the recordings sound acceptably clear though, which is to be expected from a crowd-sourced read speech corpus.\n",
- "\n",
- "Let's do a final check that the data is correctly prepared, by printing the shape of the speech input, its transcription, and the corresponding sampling rate.\n",
- "\n",
- "**Note**: *You can click the following cell a couple of times to verify multiple samples.*"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "1Po2g7YPuRTx",
- "outputId": "63478ae9-2927-4ec1-c13c-41fb3754e18e"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Target text: ülke olimpiyatları yirmi ikinci sırada tamamladı\n",
- "Input array shape: (74880,)\n",
- "Sampling rate: 16000\n"
- ]
- }
- ],
- "source": [
- "rand_int = random.randint(0, len(common_voice_train)-1)\n",
- "\n",
- "print(\"Target text:\", common_voice_train[rand_int][\"sentence\"])\n",
- "print(\"Input array shape:\", common_voice_train[rand_int][\"audio\"][\"array\"].shape)\n",
- "print(\"Sampling rate:\", common_voice_train[rand_int][\"audio\"][\"sampling_rate\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "M9teZcSwOBJ4"
- },
- "source": [
- "Good! Everything looks fine - the data is a 1-dimensional array, the sampling rate always corresponds to 16kHz, and the target text is normalized."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "k3Pbn5WvOYZF"
- },
- "source": [
- "Finally, we can leverage `Wav2Vec2Processor` to process the data to the format expected by `Wav2Vec2ForCTC` for training. To do so let's make use of Dataset's [`map(...)`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=map#datasets.DatasetDict.map) function.\n",
- "\n",
- "First, we load and resample the audio data, simply by calling `batch[\"audio\"]`.\n",
- "Second, we extract the `input_values` from the loaded audio file. In our case, the `Wav2Vec2Processor` only normalizes the data. For other speech models, however, this step can include more complex feature extraction, such as [Log-Mel feature extraction](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum).\n",
- "Third, we encode the transcriptions to label ids.\n",
- "\n",
- "**Note**: This mapping function is a good example of how the `Wav2Vec2Processor` class should be used. In \"normal\" context, calling `processor(...)` is redirected to `Wav2Vec2FeatureExtractor`'s call method. When wrapping the processor into the `as_target_processor` context, however, the same method is redirected to `Wav2Vec2CTCTokenizer`'s call method.\n",
- "For more information please check the [docs](https://huggingface.co/transformers/master/model_doc/wav2vec2.html#transformers.Wav2Vec2Processor.__call__)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "eJY7I0XAwe9p"
- },
- "outputs": [],
- "source": [
- "def prepare_dataset(batch):\n",
- " audio = batch[\"audio\"]\n",
- "\n",
- " # batched output is \"un-batched\"\n",
- " batch[\"input_values\"] = processor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_values[0]\n",
- " batch[\"input_length\"] = len(batch[\"input_values\"])\n",
- "\n",
- " with processor.as_target_processor():\n",
- " batch[\"labels\"] = processor(batch[\"sentence\"]).input_ids\n",
- " return batch"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "q6Pg_WR3OGAP"
- },
- "source": [
- "Let's apply the data preparation function to all examples."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81,
- "referenced_widgets": [
- "012b09b271a842d0a7f1cd1260654c82",
- "6a40faf77bf445308534e7acada6bf0d",
- "a62ff1ee03dc47c9834b43720df991ea",
- "03d00b443bfd445d9286f64fd8556031",
- "557063bf861648f7aefacf71aa53ea9b",
- "21af0f39c0ce40a5846b980f98481940",
- "f6e0ea791e5a44abb5d5891bb3e254ad",
- "6323e35581be4b338a904266a5e85005",
- "6da7072e7f634a3aa2927fca1bcf38c0",
- "716dc4ab4fe74abab49f3c0f009357f5",
- "8a669878b8354867944e577860910001",
- "3aa317d2b42e4674b38dafa87b5599c5",
- "0a7c2124936345febe50288a476a12a6",
- "bdcf9380af5d4601b9b2de84b06ecb40",
- "b9c5532ffabb44078de8a6f76a4b8be6",
- "7732bb1317f940faa455f992f4fd2b26",
- "f28c64f34f9540b6b6bdc765c84e2307",
- "02016dcc44994c15b69e7f2c4dd0d9c4",
- "bbfc45e0cf5644f6bc24118fa9c6c098",
- "eca458b185ae4570b1ec1e77389c871e",
- "fe156fa95ee9410daff8f7c9a8b0d3a3",
- "a5e2e1fe3ab94cc6ae1a73cc1ab6f9a8"
- ]
- },
- "id": "-np9xYK-wl8q",
- "outputId": "00d6940a-a7bf-4128-896b-76bc289e5b7f"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "012b09b271a842d0a7f1cd1260654c82",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/3478 [00:00, ?ex/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3aa317d2b42e4674b38dafa87b5599c5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/1647 [00:00, ?ex/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "common_voice_train = common_voice_train.map(prepare_dataset, remove_columns=common_voice_train.column_names)\n",
- "common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "nKcEWHvKI1by"
- },
- "source": [
- "**Note**: Currently `datasets` make use of [`torchaudio`](https://pytorch.org/audio/stable/index.html) and [`librosa`](https://librosa.org/doc/latest/index.html) for audio loading and resampling. If you wish to implement your own costumized data loading/sampling, feel free to just make use of the `\"path\"` column instead and disregard the `\"audio\"` column."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "24CxHd5ewI4T"
- },
- "source": [
- "Long input sequences require a lot of memory. XLS-R is based on `self-attention` the memory requirement scales quadratically with the input length for long input sequences (*cf.* with [this](https://www.reddit.com/r/MachineLearning/comments/genjvb/d_why_is_the_maximum_input_sequence_length_of/) reddit post). In case this demo crashes with an \"Out-of-memory\" error for you, you might want to uncomment the following lines to filter all sequences that are longer than 5 seconds for training."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "tdHfbUJ_09iA"
- },
- "outputs": [],
- "source": [
- "#max_input_length_in_sec = 5.0\n",
- "#common_voice_train = common_voice_train.filter(lambda x: x < max_input_length_in_sec * processor.feature_extractor.sampling_rate, input_columns=[\"input_length\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "1ZWDCCKqwcfS"
- },
- "source": [
- "Awesome, now we are ready to start training!"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "gYlQkKVoRUos"
- },
- "source": [
- "## Training\n",
- "\n",
- "The data is processed so that we are ready to start setting up the training pipeline. We will make use of 🤗's [Trainer](https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer) for which we essentially need to do the following:\n",
- "\n",
- "- Define a data collator. In contrast to most NLP models, XLS-R has a much larger input length than output length. *E.g.*, a sample of input length 50000 has an output length of no more than 100. Given the large input sizes, it is much more efficient to pad the training batches dynamically meaning that all training samples should only be padded to the longest sample in their batch and not the overall longest sample. Therefore, fine-tuning XLS-R requires a special padding data collator, which we will define below\n",
- "\n",
- "- Evaluation metric. During training, the model should be evaluated on the word error rate. We should define a `compute_metrics` function accordingly\n",
- "\n",
- "- Load a pretrained checkpoint. We need to load a pretrained checkpoint and configure it correctly for training.\n",
- "\n",
- "- Define the training configuration.\n",
- "\n",
- "After having fine-tuned the model, we will correctly evaluate it on the test data and verify that it has indeed learned to correctly transcribe speech."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Slk403unUS91"
- },
- "source": [
- "### Set-up Trainer\n",
- "\n",
- "Let's start by defining the data collator. The code for the data collator was copied from [this example](https://github.com/huggingface/transformers/blob/7e61d56a45c19284cfda0cee8995fb552f6b1f4e/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py#L219).\n",
- "\n",
- "Without going into too many details, in contrast to the common data collators, this data collator treats the `input_values` and `labels` differently and thus applies to separate padding functions on them (again making use of XLS-R processor's context manager). This is necessary because in speech input and output are of different modalities meaning that they should not be treated by the same padding function.\n",
- "Analogous to the common data collators, the padding tokens in the labels with `-100` so that those tokens are **not** taken into account when computing the loss."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "tborvC9hx88e"
- },
- "outputs": [],
- "source": [
- "import torch\n",
- "\n",
- "from dataclasses import dataclass, field\n",
- "from typing import Any, Dict, List, Optional, Union\n",
- "\n",
- "@dataclass\n",
- "class DataCollatorCTCWithPadding:\n",
- " \"\"\"\n",
- " Data collator that will dynamically pad the inputs received.\n",
- " Args:\n",
- " processor (:class:`~transformers.Wav2Vec2Processor`)\n",
- " The processor used for proccessing the data.\n",
- " padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):\n",
- " Select a strategy to pad the returned sequences (according to the model's padding side and padding index)\n",
- " among:\n",
- " * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single\n",
- " sequence if provided).\n",
- " * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the\n",
- " maximum acceptable input length for the model if that argument is not provided.\n",
- " * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of\n",
- " different lengths).\n",
- " \"\"\"\n",
- "\n",
- " processor: Wav2Vec2Processor\n",
- " padding: Union[bool, str] = True\n",
- "\n",
- " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
- " # split inputs and labels since they have to be of different lenghts and need\n",
- " # different padding methods\n",
- " input_features = [{\"input_values\": feature[\"input_values\"]} for feature in features]\n",
- " label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
- "\n",
- " batch = self.processor.pad(\n",
- " input_features,\n",
- " padding=self.padding,\n",
- " return_tensors=\"pt\",\n",
- " )\n",
- " with self.processor.as_target_processor():\n",
- " labels_batch = self.processor.pad(\n",
- " label_features,\n",
- " padding=self.padding,\n",
- " return_tensors=\"pt\",\n",
- " )\n",
- "\n",
- " # replace padding with -100 to ignore loss correctly\n",
- " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
- "\n",
- " batch[\"labels\"] = labels\n",
- "\n",
- " return batch"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "lbQf5GuZyQ4_"
- },
- "outputs": [],
- "source": [
- "data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "xO-Zdj-5cxXp"
- },
- "source": [
- "Next, the evaluation metric is defined. As mentioned earlier, the\n",
- "predominant metric in ASR is the word error rate (WER), hence we will use it in this notebook as well."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 49,
- "referenced_widgets": [
- "7c81059d35534b799623afe872095cac",
- "379128a308ab43ee9e785e234bb94049",
- "ff8e746cf8ef4f988617b8d4c0dd3c9c",
- "0204a7bc668746a68f6e5e5632753c1c",
- "84361b363998428a87b9e50b6625cca9",
- "c0919f3c8d594911815ce63273f7fe51",
- "69f2a9e473534148b96b2e9bd639a087",
- "5cd8c74ba2e845d498afdc1c25009767",
- "3f0c587f7b764d96837c8e16254aab12",
- "d3b5f5a0d35642e0b606ac63c38f88fa",
- "7ce84a97d72848c0967f732734afdd68"
- ]
- },
- "id": "9Xsux2gmyXso",
- "outputId": "18ceeb9e-1a0d-4ee8-f511-a12ad3608bf1"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7c81059d35534b799623afe872095cac",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading: 0%| | 0.00/1.95k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "wer_metric = load_metric(\"wer\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "E1qZU5p-deqB"
- },
- "source": [
- "The model will return a sequence of logit vectors:\n",
- "$\\mathbf{y}_1, \\ldots, \\mathbf{y}_m$ with $\\mathbf{y}_1 = f_{\\theta}(x_1, \\ldots, x_n)[0]$ and $n >> m$.\n",
- "\n",
- "A logit vector $\\mathbf{y}_1$ contains the log-odds for each word in the vocabulary we defined earlier, thus $\\text{len}(\\mathbf{y}_i) =$ `config.vocab_size`. We are interested in the most likely prediction of the model and thus take the `argmax(...)` of the logits. Also, we transform the encoded labels back to the original string by replacing `-100` with the `pad_token_id` and decoding the ids while making sure that consecutive tokens are **not** grouped to the same token in CTC style ${}^1$."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "1XZ-kjweyTy_"
- },
- "outputs": [],
- "source": [
- "def compute_metrics(pred):\n",
- " pred_logits = pred.predictions\n",
- " pred_ids = np.argmax(pred_logits, axis=-1)\n",
- "\n",
- " pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
- "\n",
- " pred_str = processor.batch_decode(pred_ids)\n",
- " # we do not want to group tokens when computing the metrics\n",
- " label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
- "\n",
- " wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
- "\n",
- " return {\"wer\": wer}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Xmgrx4bRwLIH"
- },
- "source": [
- "Now, we can load the pretrained checkpoint of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m). The tokenizer's `pad_token_id` must be to define the model's `pad_token_id` or in the case of `Wav2Vec2ForCTC` also CTC's *blank token* ${}^2$. To save GPU memory, we enable PyTorch's [gradient checkpointing](https://pytorch.org/docs/stable/checkpoint.html) and also set the loss reduction to \"*mean*\".\n",
- "\n",
- "Because the dataset is quite small (~6h of training data) and because Common Voice is quite noisy, fine-tuning Facebook's [wav2vec2-xls-r-300m checkpoint](https://huggingface.co/facebook/wav2vec2-xls-r-300m) seems to require some hyper-parameter tuning. Therefore, I had to play around a bit with different values for dropout, [SpecAugment](https://arxiv.org/abs/1904.08779)'s masking dropout rate, layer dropout, and the learning rate until training seemed to be stable enough.\n",
- "\n",
- "**Note**: When using this notebook to train XLS-R on another language of Common Voice those hyper-parameter settings might not work very well. Feel free to adapt those depending on your use case."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 191,
- "referenced_widgets": [
- "1ca82f9af3ae423096661a1ffd8a165f",
- "ce429683f48349c083e5fc3253a897d7",
- "acc35dfdfca542828d1bb02cbde15dfe",
- "aa92ff120d9c4dd68ae941d7a1f33a81",
- "731a283141f642b9ab5bf9f7053381d2",
- "4246da00789f44e2abce952906bde6f1",
- "059588e34a88476eb6bbc1860ddc27ef",
- "6ae3b3139e6641fc9e62ae5744349add",
- "92c30a7c6102443cad2f6f03211c32e0",
- "ad95ae421231492e814238bde2ecb551",
- "136f973d9623421eb38e09c73c6b6810",
- "367c85905a024248bce6c620b822b2ee",
- "7ea310732a56432da1a095a8d30edc1c",
- "2d2b8b8d5774494aa73d872e9a4c10d9",
- "f4af6a0756e241e49e5d325f1bdb18b4",
- "2b7e52a9be904663ae74226691de6ebd",
- "771530ea22364f1ea8963e2d542fcf49",
- "1cdac9cda666466ca1e09f32661d40ed",
- "3ec9917890f4452883bcaeac444d056c",
- "e9531fcd48b74929bfdb45cd3f3315e7",
- "349c9e8b2a8846c1bff5a03d2a28066a",
- "de1e5c31eacf4fa59cfa51926354acca"
- ]
- },
- "id": "e7cqAWIayn6w",
- "outputId": "3e6cebea-78ef-45df-87b0-f63b78ba9644"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1ca82f9af3ae423096661a1ffd8a165f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading: 0%| | 0.00/1.53k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "367c85905a024248bce6c620b822b2ee",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading: 0%| | 0.00/1.18G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_hid.weight', 'project_q.bias', 'quantizer.weight_proj.weight', 'quantizer.weight_proj.bias', 'project_q.weight', 'project_hid.bias', 'quantizer.codevectors']\n",
- "- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
- "- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
- "Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.bias', 'lm_head.weight']\n",
- "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
- ]
- }
- ],
- "source": [
- "from transformers import Wav2Vec2ForCTC\n",
- "\n",
- "model = Wav2Vec2ForCTC.from_pretrained(\n",
- " \"facebook/wav2vec2-xls-r-300m\",\n",
- " attention_dropout=0.0,\n",
- " hidden_dropout=0.0,\n",
- " feat_proj_dropout=0.0,\n",
- " mask_time_prob=0.05,\n",
- " layerdrop=0.0,\n",
- " ctc_loss_reduction=\"mean\",\n",
- " pad_token_id=processor.tokenizer.pad_token_id,\n",
- " vocab_size=len(processor.tokenizer),\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "1DwR3XLSzGDD"
- },
- "source": [
- "The first component of XLS-R consists of a stack of CNN layers that are used to extract acoustically meaningful - but contextually independent - features from the raw speech signal. This part of the model has already been sufficiently trained during pretraining and as stated in the [paper](https://arxiv.org/pdf/2006.13979.pdf) does not need to be fine-tuned anymore.\n",
- "Thus, we can set the `requires_grad` to `False` for all parameters of the *feature extraction* part."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "oGI8zObtZ3V0"
- },
- "outputs": [],
- "source": [
- "model.freeze_feature_extractor()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "lD4aGhQM0K-D"
- },
- "source": [
- "In a final step, we define all parameters related to training.\n",
- "To give more explanation on some of the parameters:\n",
- "- `group_by_length` makes training more efficient by grouping training samples of similar input length into one batch. This can significantly speed up training time by heavily reducing the overall number of useless padding tokens that are passed through the model\n",
- "- `learning_rate` and `weight_decay` were heuristically tuned until fine-tuning has become stable. Note that those parameters strongly depend on the Common Voice dataset and might be suboptimal for other speech datasets.\n",
- "\n",
- "For more explanations on other parameters, one can take a look at the [docs](https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer#trainingarguments).\n",
- "\n",
- "During training, a checkpoint will be uploaded asynchronously to the hub every 400 training steps. It allows you to also play around with the demo widget even while your model is still training.\n",
- "\n",
- "**Note**: If one does not want to upload the model checkpoints to the hub, simply set `push_to_hub=False`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "KbeKSV7uzGPP"
- },
- "outputs": [],
- "source": [
- "from transformers import TrainingArguments\n",
- "\n",
- "training_args = TrainingArguments(\n",
- " output_dir=repo_name,\n",
- " group_by_length=True,\n",
- " per_device_train_batch_size=16,\n",
- " gradient_accumulation_steps=2,\n",
- " evaluation_strategy=\"steps\",\n",
- " num_train_epochs=30,\n",
- " gradient_checkpointing=True,\n",
- " fp16=True,\n",
- " save_steps=400,\n",
- " eval_steps=400,\n",
- " logging_steps=400,\n",
- " learning_rate=3e-4,\n",
- " warmup_steps=500,\n",
- " save_total_limit=2,\n",
- " push_to_hub=True,\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "OsW-WZcL1ZtN"
- },
- "source": [
- "Now, all instances can be passed to Trainer and we are ready to start training!"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "rY7vBmFCPFgC",
- "outputId": "c47ecc78-5259-44db-c121-5bd7945defb8"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.7/dist-packages/huggingface_hub/hf_api.py:718: FutureWarning: `create_repo` now takes `token` as an optional positional argument. Be sure to adapt your code!\n",
- " FutureWarning,\n",
- "/content/wav2vec2-large-xls-r-300m-turkish-colab is already a clone of https://huggingface.co/patrickvonplaten/wav2vec2-large-xls-r-300m-turkish-colab. Make sure you pull the latest changes with `repo.git_pull()`.\n",
- "Using amp fp16 backend\n"
- ]
- }
- ],
- "source": [
- "from transformers import Trainer\n",
- "\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " data_collator=data_collator,\n",
- " args=training_args,\n",
- " compute_metrics=compute_metrics,\n",
- " train_dataset=common_voice_train,\n",
- " eval_dataset=common_voice_test,\n",
- " tokenizer=processor.feature_extractor,\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "UoXBx1JAA0DX"
- },
- "source": [
- "\n",
- "\n",
- "---\n",
- "\n",
- "${}^1$ To allow models to become independent of the speaker rate, in CTC, consecutive tokens that are identical are simply grouped as a single token. However, the encoded labels should not be grouped when decoding since they don't correspond to the predicted tokens of the model, which is why the `group_tokens=False` parameter has to be passed. If we wouldn't pass this parameter a word like `\"hello\"` would incorrectly be encoded, and decoded as `\"helo\"`.\n",
- "\n",
- "${}^2$ The blank token allows the model to predict a word, such as `\"hello\"` by forcing it to insert the blank token between the two l's. A CTC-conform prediction of `\"hello\"` of our model would be `[PAD] [PAD] \"h\" \"e\" \"e\" \"l\" \"l\" [PAD] \"l\" \"o\" \"o\" [PAD]`."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "rpvZHM1xReIW"
- },
- "source": [
- "### Training"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "j-3oKSzZ1hGq"
- },
- "source": [
- "Training will take multiple hours depending on the GPU allocated to this notebook. While the trained model yields somewhat satisfying results on *Common Voice*'s test data of Turkish, it is by no means an optimally fine-tuned model. The purpose of this notebook is just to demonstrate how to fine-tune XLS-R on an ASR dataset.\n",
- "\n",
- "In case you want to use this google colab to fine-tune your model, you should make sure that your training doesn't stop due to inactivity. A simple hack to prevent this is to paste the following code into the console of this tab (*right mouse click -> inspect -> Console tab and insert code*)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "VYYAvgkW4P0m"
- },
- "source": [
- "```javascript\n",
- "function ConnectButton(){\n",
- " console.log(\"Connect pushed\");\n",
- " document.querySelector(\"#top-toolbar > colab-connect-button\").shadowRoot.querySelector(\"#connect\").click()\n",
- "}\n",
- "setInterval(ConnectButton,60000);\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "7bGgLV2r0yvZ"
- },
- "source": [
- "Depending on what GPU was allocated to your google colab it might be possible that you are seeing an `\"out-of-memory\"` error here. In this case, it's probably best to reduce `per_device_train_batch_size` to 8 or even less and increase [`gradient_accumulation`](https://huggingface.co/transformers/master/main_classes/trainer.html#trainingarguments)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "background_save": true,
- "base_uri": "https://localhost:8080/",
- "height": 311
- },
- "id": "9fRr9TG5pGBl",
- "outputId": "122ea040-7b24-452a-c7d4-7e72e1c46973"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running training *****\n",
- " Num examples = 3478\n",
- " Num Epochs = 30\n",
- " Instantaneous batch size per device = 16\n",
- " Total train batch size (w. parallel, distributed & accumulation) = 32\n",
- " Gradient Accumulation steps = 2\n",
- " Total optimization steps = 3270\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/feature_extraction_utils.py:158: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)\n",
- " tensor = as_tensor(value)\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3270/3270 4:41:48, Epoch 30/30]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Wer | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 400 | \n",
- " 3.765200 | \n",
- " 0.625533 | \n",
- " 0.693290 | \n",
- "
\n",
- " \n",
- " 800 | \n",
- " 0.371600 | \n",
- " 0.405785 | \n",
- " 0.456337 | \n",
- "
\n",
- " \n",
- " 1200 | \n",
- " 0.177900 | \n",
- " 0.412796 | \n",
- " 0.408028 | \n",
- "
\n",
- " \n",
- " 1600 | \n",
- " 0.122600 | \n",
- " 0.399832 | \n",
- " 0.394137 | \n",
- "
\n",
- " \n",
- " 2000 | \n",
- " 0.092700 | \n",
- " 0.408412 | \n",
- " 0.371259 | \n",
- "
\n",
- " \n",
- " 2400 | \n",
- " 0.073700 | \n",
- " 0.394867 | \n",
- " 0.351956 | \n",
- "
\n",
- " \n",
- " 2800 | \n",
- " 0.058100 | \n",
- " 0.369830 | \n",
- " 0.331120 | \n",
- "
\n",
- " \n",
- " 3200 | \n",
- " 0.045300 | \n",
- " 0.359626 | \n",
- " 0.324175 | \n",
- "
\n",
- " \n",
- "
"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running Evaluation *****\n",
- " Num examples = 1647\n",
- " Batch size = 8\n",
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-400\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-400/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-400/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-400/preprocessor_config.json\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/preprocessor_config.json\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n",
- "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running Evaluation *****\n",
- " Num examples = 1647\n",
- " Batch size = 8\n",
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-800\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-800/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-800/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-800/preprocessor_config.json\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n",
- "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running Evaluation *****\n",
- " Num examples = 1647\n",
- " Batch size = 8\n",
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1200\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1200/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1200/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1200/preprocessor_config.json\n",
- "Deleting older checkpoint [wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-400] due to args.save_total_limit\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n",
- "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running Evaluation *****\n",
- " Num examples = 1647\n",
- " Batch size = 8\n",
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1600\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1600/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1600/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1600/preprocessor_config.json\n",
- "Deleting older checkpoint [wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-800] due to args.save_total_limit\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n",
- "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running Evaluation *****\n",
- " Num examples = 1647\n",
- " Batch size = 8\n",
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2000\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2000/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2000/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2000/preprocessor_config.json\n",
- "Deleting older checkpoint [wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1200] due to args.save_total_limit\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n",
- "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running Evaluation *****\n",
- " Num examples = 1647\n",
- " Batch size = 8\n",
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2400\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2400/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2400/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2400/preprocessor_config.json\n",
- "Deleting older checkpoint [wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-1600] due to args.save_total_limit\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n",
- "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running Evaluation *****\n",
- " Num examples = 1647\n",
- " Batch size = 8\n",
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2800\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2800/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2800/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2800/preprocessor_config.json\n",
- "Deleting older checkpoint [wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2000] due to args.save_total_limit\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n",
- "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
- "***** Running Evaluation *****\n",
- " Num examples = 1647\n",
- " Batch size = 8\n",
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-3200\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-3200/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-3200/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-3200/preprocessor_config.json\n",
- "Deleting older checkpoint [wav2vec2-large-xls-r-300m-turkish-colab/checkpoint-2400] due to args.save_total_limit\n",
- "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
- " return (input_length - kernel_size) // stride + 1\n",
- "\n",
- "\n",
- "Training completed. Do not forget to share your model on huggingface.co/models =)\n",
- "\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "TrainOutput(global_step=3270, training_loss=0.5767540113641582, metrics={'train_runtime': 16918.4457, 'train_samples_per_second': 6.167, 'train_steps_per_second': 0.193, 'total_flos': 1.2873093995838829e+19, 'train_loss': 0.5767540113641582, 'epoch': 30.0})"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainer.train()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "a9q4mgMZplr_"
- },
- "source": [
- "The training loss and validation WER go down nicely."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "4Ya7WEy0pd13"
- },
- "source": [
- "You can now upload the result of the training to the 🤗 Hub, just execute this instruction:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "background_save": true,
- "referenced_widgets": [
- "2d2f71d2c70d466cb9a0d3317fb3095e",
- "2e894a5b95cb489db8b27c6617fd9533"
- ]
- },
- "id": "ArG1Thf6NBWm",
- "outputId": "62ef1c3d-786c-4e25-f9c5-4020e71aa298"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Saving model checkpoint to wav2vec2-large-xls-r-300m-turkish-colab\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/config.json\n",
- "Model weights saved in wav2vec2-large-xls-r-300m-turkish-colab/pytorch_model.bin\n",
- "Configuration saved in wav2vec2-large-xls-r-300m-turkish-colab/preprocessor_config.json\n",
- "Several commits (2) will be pushed upstream.\n",
- "The progress bars may be unreliable.\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2d2f71d2c70d466cb9a0d3317fb3095e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Upload file pytorch_model.bin: 0%| | 3.35k/1.18G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2e894a5b95cb489db8b27c6617fd9533",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Upload file runs/Nov12_14-33-48_c2d4142f9305/events.out.tfevents.1636727730.c2d4142f9305.1468.0: 41%|####1 …"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "To https://huggingface.co/patrickvonplaten/wav2vec2-large-xls-r-300m-turkish-colab\n",
- " 56ebe74..fe76946 main -> main\n",
- "\n",
- "Dropping the following result as it does not have all the necessary field:\n",
- "{'dataset': {'name': 'common_voice', 'type': 'common_voice', 'args': 'tr'}}\n",
- "To https://huggingface.co/patrickvonplaten/wav2vec2-large-xls-r-300m-turkish-colab\n",
- " fe76946..5f0d67b main -> main\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'https://huggingface.co/patrickvonplaten/wav2vec2-large-xls-r-300m-turkish-colab/commit/fe769461e4e2fb9534740e6c278a0cfabf268474'"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainer.push_to_hub()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "RHIVc44_fY2N"
- },
- "source": [
- "You can now share this model with all your friends, family, favorite pets: they can all load it with the identifier \"your-username/the-name-you-picked\" so for instance:"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "5lWWIKyBpx1h"
- },
- "source": [
- "```python\n",
- "from transformers import AutoModelForCTC, Wav2Vec2Processor\n",
- "\n",
- "model = AutoModelForCTC.from_pretrained(\"patrickvonplaten/wav2vec2-large-xls-r-300m-tr-colab\")\n",
- "processor = Wav2Vec2Processor.from_pretrained(\"patrickvonplaten/wav2vec2-large-xls-r-300m-tr-colab\")\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "pmi1cX0fRBit"
- },
- "source": [
- "For more examples of how XLS-R can be fine-tuned, please take a look at the [official speech recognition examples](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition#examples)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "L8b8Qkoy3KyS"
- },
- "source": [
- "### Evaluation\n",
- "\n",
- "As a final check, let's load the model and verify that it indeed has learned to transcribe Turkish speech.\n",
- "\n",
- "Let's first load the pretrained checkpoint."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "background_save": true
- },
- "id": "R351I9IQp_9D",
- "outputId": "f2a2ee99-7db6-4962-e140-0107054102d3"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "loading configuration file wav2vec2-large-xls-r-300m-turkish-colab/config.json\n",
- "Model config Wav2Vec2Config {\n",
- " \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
- " \"activation_dropout\": 0.0,\n",
- " \"apply_spec_augment\": true,\n",
- " \"architectures\": [\n",
- " \"Wav2Vec2ForCTC\"\n",
- " ],\n",
- " \"attention_dropout\": 0.0,\n",
- " \"bos_token_id\": 1,\n",
- " \"classifier_proj_size\": 256,\n",
- " \"codevector_dim\": 768,\n",
- " \"contrastive_logits_temperature\": 0.1,\n",
- " \"conv_bias\": true,\n",
- " \"conv_dim\": [\n",
- " 512,\n",
- " 512,\n",
- " 512,\n",
- " 512,\n",
- " 512,\n",
- " 512,\n",
- " 512\n",
- " ],\n",
- " \"conv_kernel\": [\n",
- " 10,\n",
- " 3,\n",
- " 3,\n",
- " 3,\n",
- " 3,\n",
- " 2,\n",
- " 2\n",
- " ],\n",
- " \"conv_stride\": [\n",
- " 5,\n",
- " 2,\n",
- " 2,\n",
- " 2,\n",
- " 2,\n",
- " 2,\n",
- " 2\n",
- " ],\n",
- " \"ctc_loss_reduction\": \"mean\",\n",
- " \"ctc_zero_infinity\": false,\n",
- " \"diversity_loss_weight\": 0.1,\n",
- " \"do_stable_layer_norm\": true,\n",
- " \"eos_token_id\": 2,\n",
- " \"feat_extract_activation\": \"gelu\",\n",
- " \"feat_extract_dropout\": 0.0,\n",
- " \"feat_extract_norm\": \"layer\",\n",
- " \"feat_proj_dropout\": 0.0,\n",
- " \"feat_quantizer_dropout\": 0.0,\n",
- " \"final_dropout\": 0.0,\n",
- " \"gradient_checkpointing\": false,\n",
- " \"hidden_act\": \"gelu\",\n",
- " \"hidden_dropout\": 0.0,\n",
- " \"hidden_size\": 1024,\n",
- " \"initializer_range\": 0.02,\n",
- " \"intermediate_size\": 4096,\n",
- " \"layer_norm_eps\": 1e-05,\n",
- " \"layerdrop\": 0.0,\n",
- " \"mask_feature_length\": 10,\n",
- " \"mask_feature_prob\": 0.0,\n",
- " \"mask_time_length\": 10,\n",
- " \"mask_time_prob\": 0.05,\n",
- " \"model_type\": \"wav2vec2\",\n",
- " \"num_attention_heads\": 16,\n",
- " \"num_codevector_groups\": 2,\n",
- " \"num_codevectors_per_group\": 320,\n",
- " \"num_conv_pos_embedding_groups\": 16,\n",
- " \"num_conv_pos_embeddings\": 128,\n",
- " \"num_feat_extract_layers\": 7,\n",
- " \"num_hidden_layers\": 24,\n",
- " \"num_negatives\": 100,\n",
- " \"pad_token_id\": 36,\n",
- " \"proj_codevector_dim\": 768,\n",
- " \"torch_dtype\": \"float32\",\n",
- " \"transformers_version\": \"4.11.3\",\n",
- " \"use_weighted_layer_sum\": false,\n",
- " \"vocab_size\": 39\n",
- "}\n",
- "\n",
- "loading weights file wav2vec2-large-xls-r-300m-turkish-colab/pytorch_model.bin\n",
- "All model checkpoint weights were used when initializing Wav2Vec2ForCTC.\n",
- "\n",
- "All the weights of Wav2Vec2ForCTC were initialized from the model checkpoint at wav2vec2-large-xls-r-300m-turkish-colab.\n",
- "If your task is similar to the task the model of the checkpoint was trained on, you can already use Wav2Vec2ForCTC for predictions without further training.\n",
- "loading feature extractor configuration file wav2vec2-large-xls-r-300m-turkish-colab/preprocessor_config.json\n",
- "Feature extractor Wav2Vec2FeatureExtractor {\n",
- " \"do_normalize\": true,\n",
- " \"feature_extractor_type\": \"Wav2Vec2FeatureExtractor\",\n",
- " \"feature_size\": 1,\n",
- " \"padding_side\": \"right\",\n",
- " \"padding_value\": 0.0,\n",
- " \"return_attention_mask\": true,\n",
- " \"sampling_rate\": 16000\n",
- "}\n",
- "\n",
- "Didn't find file wav2vec2-large-xls-r-300m-turkish-colab/tokenizer.json. We won't load it.\n",
- "loading file wav2vec2-large-xls-r-300m-turkish-colab/vocab.json\n",
- "loading file wav2vec2-large-xls-r-300m-turkish-colab/tokenizer_config.json\n",
- "loading file wav2vec2-large-xls-r-300m-turkish-colab/added_tokens.json\n",
- "loading file wav2vec2-large-xls-r-300m-turkish-colab/special_tokens_map.json\n",
- "loading file None\n",
- "Adding to the vocabulary\n",
- "Adding to the vocabulary\n"
- ]
- }
- ],
- "source": [
- "model = Wav2Vec2ForCTC.from_pretrained(repo_name).to(\"cuda\")\n",
- "processor = Wav2Vec2Processor.from_pretrained(repo_name)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "jD7TZ1YS3S_K"
- },
- "source": [
- "\n",
- "Now, we will just take the first example of the test set, run it through the model and take the `argmax(...)` of the logits to retrieve the predicted token ids."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "background_save": true
- },
- "id": "pax07TnL3WZn",
- "outputId": "867787ff-0cb7-41e9-f926-96f7b53e7134"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "It is strongly recommended to pass the ``sampling_rate`` argument to this function.Failing to do so can result in silent errors that might be hard to debug.\n"
- ]
- }
- ],
- "source": [
- "input_dict = processor(common_voice_test[0][\"input_values\"], return_tensors=\"pt\", padding=True)\n",
- "\n",
- "logits = model(input_dict.input_values.to(\"cuda\")).logits\n",
- "\n",
- "pred_ids = torch.argmax(logits, dim=-1)[0]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "7nkzSQu53Zs2"
- },
- "source": [
- "We adapted `common_voice_test` quite a bit so that the dataset instance does not contain the original sentence label anymore. Thus, we re-use the original dataset to get the label of the first example."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "background_save": true,
- "referenced_widgets": [
- "54097a6c744849128d7cc3da8aad6609",
- "b8827ecbec9e44f09216f62c1ee12840",
- "8728bb32478240b7abe576375b01e640",
- "19b8a530352a423794395979e6415bea",
- "5fc8ec04870e4bb7b63b20844c355ab6"
- ]
- },
- "id": "fe2AE-2xqKHx",
- "outputId": "1d8321b3-4f41-4d71-e74e-f33f32a7b261"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Using custom data configuration tr-ad9f7b76efa9f3a0\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Downloading and preparing dataset common_voice/tr (download: 592.09 MiB, generated: 2.89 MiB, post-processed: Unknown size, total: 594.98 MiB) to /root/.cache/huggingface/datasets/common_voice/tr-ad9f7b76efa9f3a0/6.1.0/f7a9d973839b7706e9e281c19b7e512f31badf3c0fdbd21c671f3c4bf9acf3b9...\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "54097a6c744849128d7cc3da8aad6609",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0 examples [00:00, ? examples/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b8827ecbec9e44f09216f62c1ee12840",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0 examples [00:00, ? examples/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8728bb32478240b7abe576375b01e640",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0 examples [00:00, ? examples/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "19b8a530352a423794395979e6415bea",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0 examples [00:00, ? examples/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5fc8ec04870e4bb7b63b20844c355ab6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0 examples [00:00, ? examples/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Dataset common_voice downloaded and prepared to /root/.cache/huggingface/datasets/common_voice/tr-ad9f7b76efa9f3a0/6.1.0/f7a9d973839b7706e9e281c19b7e512f31badf3c0fdbd21c671f3c4bf9acf3b9. Subsequent calls will reuse this data.\n"
- ]
- }
- ],
- "source": [
- "common_voice_test_transcription = load_dataset(\"common_voice\", \"tr\", data_dir=\"./cv-corpus-6.1-2020-12-11\", split=\"test\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "epu8kCQZ3h70"
- },
- "source": [
- "\n",
- "Finally, we can decode the example."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "background_save": true
- },
- "id": "K4xWqmk_qMn0",
- "outputId": "d9e40b3c-f02a-48a1-d081-6d7e8b37dcaf"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Prediction:\n",
- "ha ta küçük şeyleri için bir büyük biş şeylir koğoluyor ve yeneküçük şeyler için bir birmizi incilkiyoruz\n",
- "\n",
- "Reference:\n",
- "hayatta küçük şeyleri kovalıyor ve yine küçük şeyler için birbirimizi incitiyoruz.\n"
- ]
- }
- ],
- "source": [
- "print(\"Prediction:\")\n",
- "print(processor.decode(pred_ids))\n",
- "\n",
- "print(\"\\nReference:\")\n",
- "print(common_voice_test_transcription[0][\"sentence\"].lower())"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "HwhyoMml3oOT"
- },
- "source": [
- "Alright! The transcription can definitely be recognized from our prediction, but it is not perfect yet. Training the model a bit longer, spending more time on the data preprocessing, and especially using a language model for decoding would certainly improve the model's overall performance.\n",
- "\n",
- "For a demonstration model on a low-resource language, the results are quite acceptable however 🤗."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "uA4FF5fTZCK_"
- },
- "source": [
- "## Decoding with an n-gram language model"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "W2jMmdD6-54j",
- "outputId": "647599e9-b7b8-41ec-87d3-9012cfef6994"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "/content/drive/MyDrive/xls-r-ngram\n"
- ]
- }
- ],
- "source": [
- "%cd /content/drive/MyDrive/xls-r-ngram/"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "RZZmQONlQQAV",
- "outputId": "c5fa65f7-4d55-4c7b-c213-718db9a8ba0c"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "--2024-04-09 07:52:18-- https://kheafield.com/code/kenlm.tar.gz\n",
- "Resolving kheafield.com (kheafield.com)... 35.196.63.85\n",
- "Connecting to kheafield.com (kheafield.com)|35.196.63.85|:443... connected.\n",
- "HTTP request sent, awaiting response... 200 OK\n",
- "Length: 491888 (480K) [application/x-gzip]\n",
- "Saving to: ‘STDOUT’\n",
- "\n",
- "- 100%[===================>] 480.36K 222KB/s in 2.2s \n",
- "\n",
- "2024-04-09 07:52:20 (222 KB/s) - written to stdout [491888/491888]\n",
- "\n",
- "\u001b[0mCMake Deprecation Warning at CMakeLists.txt:1 (cmake_minimum_required):\n",
- " Compatibility with CMake < 3.5 will be removed from a future version of\n",
- " CMake.\n",
- "\n",
- " Update the VERSION argument value or use a ... suffix to tell\n",
- " CMake that the project does not need compatibility with older versions.\n",
- "\n",
- "\u001b[0m\n",
- "-- The C compiler identification is GNU 11.4.0\n",
- "-- The CXX compiler identification is GNU 11.4.0\n",
- "-- Detecting C compiler ABI info\n",
- "-- Detecting C compiler ABI info - done\n",
- "-- Check for working C compiler: /usr/bin/cc - skipped\n",
- "-- Detecting C compile features\n",
- "-- Detecting C compile features - done\n",
- "-- Detecting CXX compiler ABI info\n",
- "-- Detecting CXX compiler ABI info - done\n",
- "-- Check for working CXX compiler: /usr/bin/c++ - skipped\n",
- "-- Detecting CXX compile features\n",
- "-- Detecting CXX compile features - done\n",
- "-- Could NOT find Eigen3 (missing: Eigen3_DIR)\n",
- "-- Found Boost: /usr/lib/x86_64-linux-gnu/cmake/Boost-1.74.0/BoostConfig.cmake (found suitable version \"1.74.0\", minimum required is \"1.41.0\") found components: program_options system thread unit_test_framework \n",
- "-- Found Threads: TRUE \n",
- "-- Found ZLIB: /usr/lib/x86_64-linux-gnu/libz.so (found version \"1.2.11\") \n",
- "-- Found BZip2: /usr/lib/x86_64-linux-gnu/libbz2.so (found version \"1.0.8\") \n",
- "-- Looking for BZ2_bzCompressInit\n",
- "-- Looking for BZ2_bzCompressInit - found\n",
- "-- Looking for lzma_auto_decoder in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
- "-- Looking for lzma_auto_decoder in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
- "-- Looking for lzma_easy_encoder in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
- "-- Looking for lzma_easy_encoder in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
- "-- Looking for lzma_lzma_preset in /usr/lib/x86_64-linux-gnu/liblzma.so\n",
- "-- Looking for lzma_lzma_preset in /usr/lib/x86_64-linux-gnu/liblzma.so - found\n",
- "-- Found LibLZMA: /usr/lib/x86_64-linux-gnu/liblzma.so (found version \"5.2.5\") \n",
- "-- Looking for clock_gettime in rt\n",
- "-- Looking for clock_gettime in rt - found\n",
- "-- Configuring done (6.5s)\n",
- "-- Generating done (1.7s)\n",
- "-- Build files have been written to: /content/drive/MyDrive/xls-r-ngram/kenlm/build\n",
- "[ 0%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/bignum-dtoa.cc.o\u001b[0m\n",
- "[ 0%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/bignum.cc.o\u001b[0m\n",
- "[ 1%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/cached-powers.cc.o\u001b[0m\n",
- "[ 2%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/diy-fp.cc.o\u001b[0m\n",
- "[ 3%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/double-conversion.cc.o\u001b[0m\n",
- "[ 5%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/fast-dtoa.cc.o\u001b[0m\n",
- "[ 6%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/fixed-dtoa.cc.o\u001b[0m\n",
- "[ 8%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/double-conversion/strtod.cc.o\u001b[0m\n",
- "[ 8%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/chain.cc.o\u001b[0m\n",
- "[ 10%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/count_records.cc.o\u001b[0m\n",
- "[ 11%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/io.cc.o\u001b[0m\n",
- "[ 12%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/line_input.cc.o\u001b[0m\n",
- "[ 13%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/multi_progress.cc.o\u001b[0m\n",
- "[ 15%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/stream/rewindable_stream.cc.o\u001b[0m\n",
- "[ 16%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/bit_packing.cc.o\u001b[0m\n",
- "[ 17%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/ersatz_progress.cc.o\u001b[0m\n",
- "[ 18%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/exception.cc.o\u001b[0m\n",
- "[ 20%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/file.cc.o\u001b[0m\n",
- "[ 21%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/file_piece.cc.o\u001b[0m\n",
- "[ 22%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/float_to_string.cc.o\u001b[0m\n",
- "[ 23%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/integer_to_string.cc.o\u001b[0m\n",
- "[ 25%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/mmap.cc.o\u001b[0m\n",
- "[ 26%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/murmur_hash.cc.o\u001b[0m\n",
- "[ 27%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/parallel_read.cc.o\u001b[0m\n",
- "[ 28%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/pool.cc.o\u001b[0m\n",
- "[ 30%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/read_compressed.cc.o\u001b[0m\n",
- "[ 31%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/scoped.cc.o\u001b[0m\n",
- "[ 32%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/spaces.cc.o\u001b[0m\n",
- "[ 33%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/string_piece.cc.o\u001b[0m\n",
- "[ 35%] \u001b[32mBuilding CXX object util/CMakeFiles/kenlm_util.dir/usage.cc.o\u001b[0m\n",
- "[ 36%] \u001b[32m\u001b[1mLinking CXX static library ../lib/libkenlm_util.a\u001b[0m\n",
- "[ 36%] Built target kenlm_util\n",
- "[ 37%] \u001b[32mBuilding CXX object util/CMakeFiles/probing_hash_table_benchmark.dir/probing_hash_table_benchmark_main.cc.o\u001b[0m\n",
- "[ 38%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/bhiksha.cc.o\u001b[0m\n",
- "[ 40%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/binary_format.cc.o\u001b[0m\n",
- "[ 41%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/config.cc.o\u001b[0m\n",
- "[ 42%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/lm_exception.cc.o\u001b[0m\n",
- "[ 43%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/model.cc.o\u001b[0m\n",
- "[ 45%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/quantize.cc.o\u001b[0m\n",
- "[ 46%] \u001b[32m\u001b[1mLinking CXX executable ../bin/probing_hash_table_benchmark\u001b[0m\n",
- "[ 46%] Built target probing_hash_table_benchmark\n",
- "[ 47%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/arpa_io.cc.o\u001b[0m\n",
- "[ 48%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/read_arpa.cc.o\u001b[0m\n",
- "[ 50%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/phrase.cc.o\u001b[0m\n",
- "[ 51%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/search_hashed.cc.o\u001b[0m\n",
- "[ 52%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/kenlm_filter.dir/vocab.cc.o\u001b[0m\n",
- "[ 53%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/search_trie.cc.o\u001b[0m\n",
- "[ 55%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_filter.a\u001b[0m\n",
- "[ 55%] Built target kenlm_filter\n",
- "[ 56%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/sizes.cc.o\u001b[0m\n",
- "[ 57%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/trie.cc.o\u001b[0m\n",
- "[ 58%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/trie_sort.cc.o\u001b[0m\n",
- "[ 60%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/value_build.cc.o\u001b[0m\n",
- "[ 61%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/virtual_interface.cc.o\u001b[0m\n",
- "[ 62%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/vocab.cc.o\u001b[0m\n",
- "[ 63%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/model_buffer.cc.o\u001b[0m\n",
- "[ 65%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/print.cc.o\u001b[0m\n",
- "[ 66%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/renumber.cc.o\u001b[0m\n",
- "[ 67%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm.dir/common/size_option.cc.o\u001b[0m\n",
- "[ 68%] \u001b[32m\u001b[1mLinking CXX static library ../lib/libkenlm.a\u001b[0m\n",
- "[ 68%] Built target kenlm\n",
- "[ 70%] \u001b[32mBuilding CXX object lm/CMakeFiles/query.dir/query_main.cc.o\u001b[0m\n",
- "[ 71%] \u001b[32mBuilding CXX object lm/CMakeFiles/fragment.dir/fragment_main.cc.o\u001b[0m\n",
- "[ 72%] \u001b[32m\u001b[1mLinking CXX executable ../bin/fragment\u001b[0m\n",
- "[ 72%] Built target fragment\n",
- "[ 73%] \u001b[32mBuilding CXX object lm/CMakeFiles/build_binary.dir/build_binary_main.cc.o\u001b[0m\n",
- "[ 75%] \u001b[32m\u001b[1mLinking CXX executable ../bin/query\u001b[0m\n",
- "[ 75%] Built target query\n",
- "[ 76%] \u001b[32mBuilding CXX object lm/CMakeFiles/kenlm_benchmark.dir/kenlm_benchmark_main.cc.o\u001b[0m\n",
- "[ 77%] \u001b[32m\u001b[1mLinking CXX executable ../bin/build_binary\u001b[0m\n",
- "[ 77%] Built target build_binary\n",
- "[ 78%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/adjust_counts.cc.o\u001b[0m\n",
- "[ 80%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/corpus_count.cc.o\u001b[0m\n",
- "[ 81%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/initial_probabilities.cc.o\u001b[0m\n",
- "[ 82%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/interpolate.cc.o\u001b[0m\n",
- "[ 83%] \u001b[32m\u001b[1mLinking CXX executable ../bin/kenlm_benchmark\u001b[0m\n",
- "[ 83%] Built target kenlm_benchmark\n",
- "[ 85%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/filter.dir/filter_main.cc.o\u001b[0m\n",
- "[ 86%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/output.cc.o\u001b[0m\n",
- "[ 87%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/kenlm_builder.dir/pipeline.cc.o\u001b[0m\n",
- "[ 88%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/filter\u001b[0m\n",
- "[ 88%] Built target filter\n",
- "[ 90%] \u001b[32mBuilding CXX object lm/filter/CMakeFiles/phrase_table_vocab.dir/phrase_table_vocab_main.cc.o\u001b[0m\n",
- "[ 91%] \u001b[32m\u001b[1mLinking CXX static library ../../lib/libkenlm_builder.a\u001b[0m\n",
- "[ 91%] Built target kenlm_builder\n",
- "[ 92%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/lmplz.dir/lmplz_main.cc.o\u001b[0m\n",
- "[ 93%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/phrase_table_vocab\u001b[0m\n",
- "[ 93%] Built target phrase_table_vocab\n",
- "[ 95%] \u001b[32mBuilding CXX object lm/builder/CMakeFiles/count_ngrams.dir/count_ngrams_main.cc.o\u001b[0m\n",
- "[ 96%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/lmplz\u001b[0m\n",
- "[ 96%] Built target lmplz\n",
- "[ 97%] \u001b[32m\u001b[1mLinking CXX executable ../../bin/count_ngrams\u001b[0m\n",
- "[ 97%] Built target count_ngrams\n"
- ]
- }
- ],
- "source": [
- "!wget -O - https://kheafield.com/code/kenlm.tar.gz | tar xz\n",
- "!mkdir kenlm/build && cd kenlm/build && cmake .. && make -j2\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "uME_zJUaQrlw",
- "outputId": "53b9e8b6-f3e7-42a0-cccf-96844293deac"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "build_binary filter\tkenlm_benchmark phrase_table_vocab\t query\n",
- "count_ngrams fragment\tlmplz\t\t probing_hash_table_benchmark\n"
- ]
- }
- ],
- "source": [
- "!ls kenlm/build/bin\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "npRCvP_sQyjF"
- },
- "outputs": [],
- "source": [
- "from transformers import AutoFeatureExtractor, AutoTokenizer, pipeline\n",
- "from datasets import Audio, Dataset, DatasetDict, load_dataset, load_metric\n",
- "\n",
- "import re\n",
- "import string\n",
- "import unidecode"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 860,
- "referenced_widgets": [
- "28b2dc34adf348e0b5dafa310c57f826",
- "a727d871ca474b0baa0a58b0ccd02ee3",
- "98d862eaabf54023b2f1305c6cab436b",
- "775df22308a94344a80e5a560ef768e0",
- "29465d2def27485cb7554b817601ee51",
- "9c876df7df4d499ea15f03288d92d303",
- "bae694008d9147cfb8ce0d60c6de1d48",
- "7b41651175464f2aa772a627d426a612",
- "5b306593954d43afbf06e5df6603648a",
- "0495bf9859c346d49249377233ac8acd",
- "29582652cf6f441ba69a422f61526c7c",
- "34ff5168c77f4faabcb35ff2bf6721a5",
- "df31d4419d794f5ea8fd3502f7b6a671",
- "f78e0d05b26b4ab9b506a9f1bbfb3ae4",
- "820999054bc744098a1e64246353468a",
- "2c74b94daea047a2975a96881a2f2b93",
- "97cd31f632d54fd793da8fe83222fa72",
- "93940c1d722349f98e215bddb698e661",
- "f00f3944409a4dad8755b465f8fc0409",
- "dffedff0181e4d958cbf1ab851be7bdc",
- "0e3574655f8448acb4c614c271f0bc5a",
- "a59e622148aa4963ab73ce835bcf7a22",
- "3c00e15e41104bb3b0474c5d15a7e3c5",
- "f6b7262455fd4e83b0a53de39fc81cc1",
- "01ba34d2dfb14e5e9c064a320dc6ba9b",
- "d83a8ffbf4ef465281d8519d432bb6a3",
- "ba1c82af79f54a119be6de163df40794",
- "4a2b25d243c74cb7bef3054b4c6e51d0",
- "210d015bd88d4e27b0619588a8656c6a",
- "ae2e810f51ca4f8f9afc7fab851ab755",
- "bf93b72434ae45c6a1ccafbc2bfdd84d",
- "1ec41ea5898b44a088b83857a2acc540",
- "e0488a4f58004a78b7df6655d6518ef8",
- "9bfa2700b6454d1eb4b01f1ada5ae0c7",
- "8ae2208c97564bd68ce3120ceee48207",
- "784580af0ef14d13bdf157e956ba2650",
- "72b63ca10e7e4a82999315342a10ee98",
- "47bcf08d66964cbc97c07c9f6a9ce7c3",
- "7a57dbcac48d4c3c9c67187e2cfc5826",
- "3658cb3637a644acbd6f9e0f79a61bde",
- "34278d6826a74ee0aa57ba0db5139384",
- "c1aeb1a87eb24c4e952a192ae2ed7a87",
- "679c9aff551e4a0eb7c0bad1e889ed80",
- "6c031abafe2c4072ab812e16d9bbbe80",
- "c056f785e72b4808ace510d815ed2ef6",
- "ef9830a8b1214f3cba4c207dd5adfebe",
- "bde1d5d9004f427fbc64b2244653328e",
- "882a78617e2949d4af5f9dd3683a024e",
- "702f788a0296474a8da0a90f12c95acf",
- "02f980bcc41d421aa150a8f57c422f28",
- "3f6d6ce6876c4d1486d7e02a92da4fd0",
- "9913f639042442308a9fbda1230ae716",
- "2e3d3ffab9214267bec9d0d0b2a351f6",
- "4dfbc256d8a04f2897f9b9522b8bbccd",
- "b4ff50380a6e4603aa4bd84018e3435d",
- "2a8a56ae255e485e950610db2a5440de",
- "cea7c8aa9c9f4ba3a887827e8d53e1a7",
- "71a71c475804431f9a15b4b4a16da917",
- "98551a90a93d47d7b83bc34cb3be4171",
- "d4a88a5241f04f159b76b245d96edba6",
- "c8aaa63bc35742db84eb5fac3fd47431",
- "3f3fab267c694ed8843b89d05e868d09",
- "606a1e22dd07406ab0cf9a655f593d39",
- "3459c121895c479bbb34becc62139772",
- "dc7a504ce77241a090636f69eb7cf689",
- "9693b79dc87b46fbbf2136df379d7243",
- "64b1f381ca29495eb050391410a3f9be",
- "d259904aa66c4abd836c1184379cc638",
- "ba3d11c972344c91a772848b625f1986",
- "7f09f2af0f054878912f6cfdaacd7280",
- "1c0f2eb6db78494d82dfe4231c18a186",
- "06d30c66375c40c19de44739bf04749f",
- "3cf3320281a148cab15db43d85f17c56",
- "6900dc72b64f4549b7ab2295fc82df3c",
- "8d42130cb8c649419285f937c11f1ca7",
- "22b08e38d2774e23bd6ed685aaa3325d",
- "9d92a1df1518487eb07929eecb3ff5c6",
- "58e5dd33cb034ce1821f49d3f881ae4a",
- "8fc270ccfef74a6683ca447d452ffae1",
- "a86ee875cabc4bb4b385f7a4f6ea3bea",
- "738fa9776faa450d86c284fd552f4495",
- "f6275bd987b74a488e028999bab678fd",
- "fb39efd6028040b4b6c9a122efef4e52",
- "ae1b4998b1de4dbea4822413da7a317f",
- "be51561e0d074258b44db0d8c17fb6a6",
- "445a6b206101449ea7ee7f1a197fc16e",
- "164bb32dc141469383b169f761e86f89",
- "148ec733c438472586b92583b5a33551",
- "585839d79bc74f378b07413bb09e0118",
- "ebf1cecb1da442f9b08569e89d193a9a",
- "ab10de32b94141ed9fe542a520c30df8",
- "274d029284724039a2ee938a04fdcc0d",
- "967deb198fdf445db6a29d4fd56f1a98",
- "6a92bc0ecf65468a9b6fd84b790c4c8c",
- "d11093621ef84fd8a30dffb849dfe410",
- "93717ea4078b4a7cb84e64d5fdb82b14",
- "9a77dcf81c7748c2923f6a90b29f85d4",
- "4eb3a5027a774be59dd87ece2136cb68",
- "f4134b064315427d89d0ca2a459982a0",
- "3ca06f5867264f91bb82ff28e0b4cb8d",
- "8c9b1ec5e84f45738932374e05db402a",
- "e6c7cf94d4934fecb8e11ad584926790",
- "1b624e661338414683fdc0fb3dc5d35e",
- "15aac68bb6c141e6901faaf17918e790",
- "612c3770319943069300bd833ec187bf",
- "b893141d3abe411aa0450ac7a73a1c13",
- "1375b35aefa94d53934444b0030d7e16",
- "71093adbfc874533b6c8a1973ba35ea6",
- "9ebbc43c1174436ba4d3f448c80e3006",
- "9ce8255f48104a348efd8a4215b414cb"
- ]
- },
- "id": "M1YRPnTZaFHW",
- "outputId": "4c760339-209b-4115-a5cf-0ba6370b5565"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/datasets/load.py:2516: FutureWarning: 'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n",
- "You can remove this warning by passing 'token=' instead.\n",
- " warnings.warn(\n",
- "/usr/local/lib/python3.10/dist-packages/datasets/load.py:1461: FutureWarning: The repository for mozilla-foundation/common_voice_8_0 contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/mozilla-foundation/common_voice_8_0\n",
- "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
- "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n",
- " warnings.warn(\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Downloading builder script: 0%| | 0.00/11.5k [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "28b2dc34adf348e0b5dafa310c57f826"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Downloading readme: 0%| | 0.00/11.7k [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "34ff5168c77f4faabcb35ff2bf6721a5"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Downloading extra modules: 0%| | 0.00/3.29k [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "3c00e15e41104bb3b0474c5d15a7e3c5"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Downloading extra modules: 0%| | 0.00/53.1k [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "01ba34d2dfb14e5e9c064a320dc6ba9b"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Downloading data: 0%| | 0.00/4.56G [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "c056f785e72b4808ace510d815ed2ef6"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Generating train split: 0 examples [00:00, ? examples/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "2a8a56ae255e485e950610db2a5440de"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Generating test split: 0 examples [00:00, ? examples/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "64b1f381ca29495eb050391410a3f9be"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Generating validation split: 0 examples [00:00, ? examples/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "58e5dd33cb034ce1821f49d3f881ae4a"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Generating other split: 0 examples [00:00, ? examples/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "585839d79bc74f378b07413bb09e0118"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Generating invalidated split: 0 examples [00:00, ? examples/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "3ca06f5867264f91bb82ff28e0b4cb8d"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "DatasetDict({\n",
- " train: Dataset({\n",
- " features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
- " num_rows: 39456\n",
- " })\n",
- " test: Dataset({\n",
- " features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
- " num_rows: 11598\n",
- " })\n",
- " validation: Dataset({\n",
- " features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
- " num_rows: 10849\n",
- " })\n",
- " other: Dataset({\n",
- " features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
- " num_rows: 119461\n",
- " })\n",
- " invalidated: Dataset({\n",
- " features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
- " num_rows: 11276\n",
- " })\n",
- "})"
- ]
- },
- "metadata": {},
- "execution_count": 21
- }
- ],
- "source": [
- "dataset_dict = load_dataset(\"mozilla-foundation/common_voice_8_0\", \"uz\", use_auth_token=True, )\n",
- "dataset_dict"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "pY9IWI2Ia-a6"
- },
- "source": [
- "If data download fails as unauthorized, verify that:\n",
- "1. The huggingface_login at the top of the session was successful\n",
- "2. The command to configure the git credential helper was successful\n",
- "3. You have accepted the usage agreement at the huggingface [dataset page](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "KW5NcknUaMAX"
- },
- "outputs": [],
- "source": [
- "chars_to_ignore_regex=f\"[{re.escape(string.punctuation)}]\"\n",
- "\n",
- "def remove_special_characters(batch):\n",
- " batch[\"text\"] = re.sub(\n",
- " chars_to_ignore_regex,\n",
- " \"\",\n",
- " re.sub(\"['`´]\", \"’\", # elsewhere probably meant as glottal stop\n",
- " re.sub(\"([og])['`´]\", \"\\g<1>‘\", # after o/g indicate modified char\n",
- " unidecode.unidecode(batch[\"sentence\"]).lower()\n",
- " )\n",
- " )\n",
- " ) + \" \"\n",
- " return batch"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 49,
- "referenced_widgets": [
- "4b911fa55e3a42a69e3b541605ae718a",
- "a766ecd2e8a541f78d0a4254e5cf220f",
- "b85031c1f3c44b3ea83773cc89d1f998",
- "1c9791c7054f475da13c42e59b165abd",
- "7f98a486c3d14e1d96a5b8e7fc96b904",
- "0b18758131744afca3c6bf5abb780bab",
- "73d84ac66fef4483b1730d1896987a21",
- "df9b2e33aeae47a9952c6805e03351b6",
- "d0d48aafc16d4f98ab678ab10bb62872",
- "17947db63a384bf49204a568350acdeb",
- "362d9aa00bcf487c92c5ca887f024437"
- ]
- },
- "id": "4qTL2Fc0cbMq",
- "outputId": "aa5f0bcd-6033-4fee-bb6c-3653c778ee7d"
- },
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Map: 0%| | 0/39456 [00:00, ? examples/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "4b911fa55e3a42a69e3b541605ae718a"
- }
- },
- "metadata": {}
- }
- ],
- "source": [
- "dataset_train = dataset_dict[\"train\"].map(remove_special_characters, remove_columns=dataset_dict[\"train\"].column_names)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 49,
- "referenced_widgets": [
- "8af4587626584c0a8896721f7676582e",
- "bd0f440f3f1d45cabfd1a0b1d77de2c4",
- "0360e13835704157a706b8a446ad4fe0",
- "b09b899dc6ee4e90b3de03cea202cd65",
- "0255cceccde64716b8a698ab14db6500",
- "34400c392d1748fbaa571a2e21101637",
- "6007851195084cffb09f9fe4c133feef",
- "260c20593f9f460cac9af76dc75ab4ac",
- "cd9cf62561be4da8b2986dce71cd64d8",
- "4ce2356db7934399be9cf0f6b4ce9a1b",
- "5a8ad66b1e5549f39ef7510c79840298"
- ]
- },
- "id": "-NrwpeLz-SF7",
- "outputId": "ac0f7932-a7bd-4746-9d7c-21e3989bee91"
- },
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Map: 0%| | 0/119461 [00:00, ? examples/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "8af4587626584c0a8896721f7676582e"
- }
- },
- "metadata": {}
- }
- ],
- "source": [
- "dataset_other = dataset_dict[\"other\"].map(remove_special_characters, remove_columns=dataset_dict[\"other\"].column_names)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "sX1xsY8ccWOv",
- "outputId": "3f0e2419-56b4-47c9-b1bd-77b94e0eb5d6"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " 0 1013740 8446974 xls-r-uzbek-cv8/uz_cv8_text.txt\n"
- ]
- }
- ],
- "source": [
- "text_data = \"xls-r-uzbek-cv8/uz_cv8_text.txt\"\n",
- "with open(text_data, \"w\") as fs:\n",
- " fs.write(\" \".join(dataset_train[\"text\"]) + \" \")\n",
- "\n",
- "with open(text_data, \"a\") as fs:\n",
- " fs.write(\" \".join(dataset_other[\"text\"]))\n",
- "\n",
- "\n",
- "!wc $text_data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "be17oucOcp8_",
- "outputId": "3da759be-7d9a-46bf-b57c-30a38c8363b7"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "=== 1/5 Counting and sorting n-grams ===\n",
- "Reading /content/drive/MyDrive/xls-r-ngram/xls-r-uzbek-cv8/uz_cv8_text.txt\n",
- "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
- "****************************************************************************************************\n",
- "Unigram tokens 1013740 types 98005\n",
- "=== 2/5 Calculating and sorting adjusted counts ===\n",
- "Chain sizes: 1:1176060 2:1062086336 3:1991412096 4:3186259200 5:4646628352\n",
- "Statistics:\n",
- "1 98004 D1=0.62768 D2=1.18989 D3+=1.46871\n",
- "2 539023 D1=0.794198 D2=1.50474 D3+=1.7039\n",
- "3 719386 D1=0.858088 D2=1.76379 D3+=2.1921\n",
- "4 793206 D1=0.885229 D2=1.81888 D3+=2.47486\n",
- "5 850589 D1=0.711001 D2=1.87963 D3+=2.58459\n",
- "Memory estimate for binary LM:\n",
- "type MB\n",
- "probing 63 assuming -p 1.5\n",
- "probing 76 assuming -r models -p 1.5\n",
- "trie 31 without quantization\n",
- "trie 17 assuming -q 8 -b 8 quantization \n",
- "trie 28 assuming -a 22 array pointer compression\n",
- "trie 14 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
- "=== 3/5 Calculating and sorting initial probabilities ===\n",
- "Chain sizes: 1:1176048 2:8624368 3:14387720 4:19036944 5:23816492\n",
- "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
- "####################################################################################################\n",
- "=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
- "Chain sizes: 1:1176048 2:8624368 3:14387720 4:19036944 5:23816492\n",
- "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
- "####################################################################################################\n",
- "=== 5/5 Writing ARPA model ===\n",
- "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
- "****************************************************************************************************\n",
- "Name:lmplz\tVmPeak:10804268 kB\tVmRSS:9012 kB\tRSSMax:1924332 kB\tuser:3.37604\tsys:2.45804\tCPU:5.83412\treal:7.38195\n"
- ]
- }
- ],
- "source": [
- "ngram_data = \"xls-r-uzbek-cv8/5gram.arpa\"\n",
- "!kenlm/build/bin/lmplz -o 5 < $text_data > $ngram_data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "po4zWZRjdOGc",
- "outputId": "d54de9c7-92c5-469b-c6f1-cbf35a8a18d9"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "\\data\\\n",
- "ngram 1=98004\n",
- "ngram 2=539023\n",
- "ngram 3=719386\n",
- "ngram 4=793206\n",
- "ngram 5=850589\n",
- "\n",
- "\\1-grams:\n",
- "-5.7507653\t\t0\n",
- "0\t\t-0.10007139\n",
- "-5.608028\tshartmidi\t-0.10007139\n",
- "-3.97965\tdeyman\t-0.12756462\n",
- "-3.4230683\tkeyingi\t-0.20062704\n",
- "-4.135141\tvoqealar\t-0.17204677\n",
- "-2.7541177\tbiz\t-0.29683134\n",
- "-3.5234666\tshunchaki\t-0.12191775\n",
- "-3.4540253\tqo‘l\t-0.18548343\n",
- "-3.53991\tberib\t-0.12553446\n",
- "-4.464714\tketadigan\t-0.10406738\n",
- "-2.817535\temas\t-0.23384908\n"
- ]
- }
- ],
- "source": [
- "!head -20 $ngram_data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "55U0j6JCdbT8"
- },
- "outputs": [],
- "source": [
- "corrected_data = \"xls-r-uzbek-cv8/5gram_correct.arpa\"\n",
- "with open(ngram_data, \"r\") as read_file, open(corrected_data, \"w\") as write_file:\n",
- " has_added_eos = False\n",
- " for line in read_file:\n",
- " if not has_added_eos and \"ngram 1=\" in line:\n",
- " count=line.strip().split(\"=\")[-1]\n",
- " write_file.write(line.replace(f\"{count}\", f\"{int(count)+1}\"))\n",
- " elif not has_added_eos and \"\" in line:\n",
- " write_file.write(line)\n",
- " write_file.write(line.replace(\"\", \"\"))\n",
- " has_added_eos = True\n",
- " else:\n",
- " write_file.write(line)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "gVUKO_KDearL",
- "outputId": "e171bcbb-0862-4be6-e13f-4df86496f36d"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "\\data\\\n",
- "ngram 1=98005\n",
- "ngram 2=539023\n",
- "ngram 3=719386\n",
- "ngram 4=793206\n",
- "ngram 5=850589\n",
- "\n",
- "\\1-grams:\n",
- "-5.7507653\t\t0\n",
- "0\t\t-0.10007139\n",
- "0\t\t-0.10007139\n",
- "-5.608028\tshartmidi\t-0.10007139\n",
- "-3.97965\tdeyman\t-0.12756462\n",
- "-3.4230683\tkeyingi\t-0.20062704\n",
- "-4.135141\tvoqealar\t-0.17204677\n",
- "-2.7541177\tbiz\t-0.29683134\n",
- "-3.5234666\tshunchaki\t-0.12191775\n",
- "-3.4540253\tqo‘l\t-0.18548343\n",
- "-3.53991\tberib\t-0.12553446\n",
- "-4.464714\tketadigan\t-0.10406738\n"
- ]
- }
- ],
- "source": [
- "!head -20 $corrected_data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "sSpNeQ_bel36",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "bb02cee7-c9cd-4b86-9b33-eb5dddc68191"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
- ]
- }
- ],
- "source": [
- "from transformers import AutoProcessor\n",
- "\n",
- "processor = AutoProcessor.from_pretrained(\"./xls-r-uzbek-cv8/\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "ms020VOvlmYr",
- "outputId": "fb9084c6-14dc-432c-8e52-e5244c73746c"
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "['|',\n",
- " 'a',\n",
- " 'b',\n",
- " 'c',\n",
- " 'd',\n",
- " 'e',\n",
- " 'f',\n",
- " 'g',\n",
- " 'h',\n",
- " 'i',\n",
- " 'j',\n",
- " 'k',\n",
- " 'l',\n",
- " 'm',\n",
- " 'n',\n",
- " 'o',\n",
- " 'p',\n",
- " 'q',\n",
- " 'r',\n",
- " 's',\n",
- " 't',\n",
- " 'u',\n",
- " 'v',\n",
- " 'w',\n",
- " 'x',\n",
- " 'y',\n",
- " 'z',\n",
- " '‘',\n",
- " '’',\n",
- " '[UNK]',\n",
- " '[PAD]',\n",
- " '',\n",
- " '']"
- ]
- },
- "metadata": {},
- "execution_count": 31
- }
- ],
- "source": [
- "vocab_dict =processor.tokenizer.get_vocab()\n",
- "labels = [k for k, v in sorted(vocab_dict.items(), key=lambda x: x[1])]\n",
- "labels"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "zUZ8MQ2rmFT6",
- "outputId": "93669dd7-9ca8-41ea-ca81-1b3f39031df1"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "WARNING:pyctcdecode.alphabet:Found entries of length > 1 in alphabet. This is unusual unless style is BPE, but the alphabet was not recognized as BPE type. Is this correct?\n"
- ]
- }
- ],
- "source": [
- "from pyctcdecode import build_ctcdecoder\n",
- "\n",
- "decoder = build_ctcdecoder(labels=labels, kenlm_model_path=corrected_data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "PTNuGmy9nFRr"
- },
- "outputs": [],
- "source": [
- "from transformers import Wav2Vec2ProcessorWithLM\n",
- "\n",
- "processor_with_lm = Wav2Vec2ProcessorWithLM(\n",
- " feature_extractor=processor.feature_extractor,\n",
- " tokenizer=processor.tokenizer,\n",
- " decoder = decoder,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "import shutil\n",
- "shutil.rmtree(\"xls-r-uzbek-cv8/language_model\")\n"
- ],
- "metadata": {
- "id": "vJGiEATd7vRG"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "2GuhuK11nlBe"
- },
- "outputs": [],
- "source": [
- "processor_with_lm.save_pretrained(\"xls-r-uzbek-cv8\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "jrV4hXy3oEJI",
- "outputId": "c5286483-8643-4831-d3cc-0ca129e17957"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "total 144M\n",
- "-rw------- 1 root root 143M Apr 9 08:12 5gram_correct.arpa\n",
- "-rw------- 1 root root 78 Apr 9 08:17 attrs.json\n",
- "-rw------- 1 root root 1.1M Apr 9 08:17 unigrams.txt\n"
- ]
- }
- ],
- "source": [
- "#!rm -r xls-r-uzbek-cv8/language_model/\n",
- "!ls -alh xls-r-uzbek-cv8/language_model/"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "GxIaO9JLAk8A",
- "outputId": "02930a5f-f20e-45b1-c599-b1f2d8ca6d58"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Reading xls-r-uzbek-cv8/language_model/5gram_correct.arpa\n",
- "----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
- "****************************************************************************************************\n",
- "SUCCESS\n",
- "total 67M\n",
- "-rw------- 1 root root 66M Apr 9 08:17 5gram.bin\n",
- "-rw------- 1 root root 78 Apr 9 08:17 attrs.json\n",
- "-rw------- 1 root root 1.1M Apr 9 08:17 unigrams.txt\n"
- ]
- }
- ],
- "source": [
- "!kenlm/build/bin/build_binary xls-r-uzbek-cv8/language_model/5gram_correct.arpa xls-r-uzbek-cv8/language_model/5gram.bin\n",
- "!rm xls-r-uzbek-cv8/language_model/5gram_correct.arpa\n",
- "!ls -alh xls-r-uzbek-cv8/language_model/"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "WigwTkyWoJgg",
- "outputId": "abb946b9-8f9b-4b26-f747-fb23e9eef954"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "python3: can't open file '/content/drive/MyDrive/xls-r-ngram/./eval.py': [Errno 2] No such file or directory\n"
- ]
- }
- ],
- "source": [
- "!python ./eval.py --model_id . --dataset mozilla-foundation/common_voice_8_0 --config uz --split \"test\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "29B3FYPhyHST",
- "outputId": "b11cc6a3-4555-4c16-c97a-c64f8a460c6a"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "[Errno 2] No such file or directory: 'xls-r-uzbek-cv8/'\n",
- "/content\n"
- ]
- }
- ],
- "source": [
- "%cd xls-r-uzbek-cv8/"
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "!git remote remove origin\n"
- ],
- "metadata": {
- "id": "RHzKe8cX_4TG"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "!git remote add origin https://huggingface.co/zohirjonsharipov/xls-r-uzbek-cv8\n"
- ],
- "metadata": {
- "id": "3O5oAnL__8FC"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "W8DN9SZ-Errc"
- },
- "outputs": [],
- "source": [
- "!git add eval.py preprocessor_config.json tokenizer_config.json language_model/"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "sLIBafqmEyq6"
- },
- "outputs": [],
- "source": [
- "!git add alphabet.json"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "WnQl8yyuFg8u",
- "outputId": "8e559cfd-2389-4281-d0ae-ed704436c590"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "On branch main\n",
- "Changes not staged for commit:\n",
- " (use \"git add ...\" to update what will be committed)\n",
- " (use \"git restore ...\" to discard changes in working directory)\n",
- "\t\u001b[31mmodified: .ipynb_checkpoints/eval-checkpoint.py\u001b[m\n",
- "\t\u001b[31mmodified: .ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py\u001b[m\n",
- "\t\u001b[31mmodified: added_tokens.json\u001b[m\n",
- "\t\u001b[31mmodified: log_mozilla-foundation_common_voice_8_0_uz_test[_500]_predictions.txt\u001b[m\n",
- "\t\u001b[31mmodified: log_mozilla-foundation_common_voice_8_0_uz_test[_500]_targets.txt\u001b[m\n",
- "\t\u001b[31mmodified: mozilla-foundation_common_voice_8_0_uz_test[_500]_eval_results.txt\u001b[m\n",
- "\t\u001b[31mmodified: requirements.txt\u001b[m\n",
- "\t\u001b[31mmodified: run_speech_recognition_ctc.py\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan27_22-59-08_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643325211.6916795/events.out.tfevents.1643325211.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.399095.1\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan27_22-59-08_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643325211.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.399095.0\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan28_04-57-04_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643346306.8664992/events.out.tfevents.1643346306.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.541469.1\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan28_04-57-04_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643346306.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.541469.0\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan30_19-35-25_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643572438.487491/events.out.tfevents.1643572438.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2037878.1\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan30_19-35-25_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643572438.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2037878.0\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan31_00-08-55_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643588110.005454/events.out.tfevents.1643588110.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2141134.1\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan31_00-08-55_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643588109.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2141134.0\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan31_05-52-36_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643608732.4243534/events.out.tfevents.1643608732.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2278718.1\u001b[m\n",
- "\t\u001b[31mmodified: runs/Jan31_05-52-36_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643608732.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2278718.0\u001b[m\n",
- "\t\u001b[31mmodified: special_tokens_map.json\u001b[m\n",
- "\t\u001b[31mmodified: vocab.json\u001b[m\n",
- "\n",
- "Untracked files:\n",
- " (use \"git add ...\" to include in what will be committed)\n",
- "\t\u001b[31m5gram.arpa\u001b[m\n",
- "\t\u001b[31m5gram_correct.arpa\u001b[m\n",
- "\t\u001b[31muz_cv8_text.txt\u001b[m\n",
- "\n",
- "no changes added to commit (use \"git add\" and/or \"git commit -a\")\n"
- ]
- }
- ],
- "source": [
- "!git commit -m \"add ngram LM from train+other\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "R5x8nIucGJK3"
- },
- "outputs": [],
- "source": [
- "!git config --global user.name \"Zohirjon Sharipov\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "igL2FAM7F4gL"
- },
- "outputs": [],
- "source": [
- "!git config --global user.email \"zohirbeksharipov97@gmail.com\""
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "!git branch\n"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "I3KPnnxsDKRD",
- "outputId": "9647d5b4-48ed-4186-eeb2-c71f1222688c"
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "* \u001b[32mmain\u001b[m\n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "!git branch with_ngram_LM\n"
- ],
- "metadata": {
- "id": "pYxjfXGbDWSm"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "!git checkout with_ngram_LM\n"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "VwX-ih5HDYSs",
- "outputId": "ef1cdf58-b3e5-445c-e239-e80eb45c46c6"
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "M\t.ipynb_checkpoints/eval-checkpoint.py\n",
- "M\t.ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py\n",
- "M\tadded_tokens.json\n",
- "M\tlog_mozilla-foundation_common_voice_8_0_uz_test[_500]_predictions.txt\n",
- "M\tlog_mozilla-foundation_common_voice_8_0_uz_test[_500]_targets.txt\n",
- "M\tmozilla-foundation_common_voice_8_0_uz_test[_500]_eval_results.txt\n",
- "M\trequirements.txt\n",
- "M\trun_speech_recognition_ctc.py\n",
- "M\truns/Jan27_22-59-08_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643325211.6916795/events.out.tfevents.1643325211.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.399095.1\n",
- "M\truns/Jan27_22-59-08_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643325211.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.399095.0\n",
- "M\truns/Jan28_04-57-04_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643346306.8664992/events.out.tfevents.1643346306.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.541469.1\n",
- "M\truns/Jan28_04-57-04_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643346306.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.541469.0\n",
- "M\truns/Jan30_19-35-25_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643572438.487491/events.out.tfevents.1643572438.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2037878.1\n",
- "M\truns/Jan30_19-35-25_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643572438.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2037878.0\n",
- "M\truns/Jan31_00-08-55_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643588110.005454/events.out.tfevents.1643588110.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2141134.1\n",
- "M\truns/Jan31_00-08-55_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643588109.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2141134.0\n",
- "M\truns/Jan31_05-52-36_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643608732.4243534/events.out.tfevents.1643608732.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2278718.1\n",
- "M\truns/Jan31_05-52-36_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643608732.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2278718.0\n",
- "M\tspecial_tokens_map.json\n",
- "M\tvocab.json\n",
- "Switched to branch 'with_ngram_LM'\n",
- "fatal: cannot exec '.git/hooks/post-checkout': Permission denied\n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "!git add .\n",
- "!git commit -m \"add ngram LM from train+other\"\n"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "2N8fin8IDcRw",
- "outputId": "4b708554-2d24-4682-8a6d-eaba0bec3f7c"
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "fatal: cannot exec '.git/hooks/post-commit': Permission denied\n",
- "[with_ngram_LM 6f8dcad] add ngram LM from train+other\n",
- " 23 files changed, 6000523 insertions(+), 7 deletions(-)\n",
- " mode change 100755 => 100644 .ipynb_checkpoints/eval-checkpoint.py\n",
- " mode change 100755 => 100644 .ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py\n",
- " create mode 100644 5gram.arpa\n",
- " create mode 100644 5gram_correct.arpa\n",
- " mode change 100755 => 100644 log_mozilla-foundation_common_voice_8_0_uz_test[_500]_predictions.txt\n",
- " mode change 100755 => 100644 log_mozilla-foundation_common_voice_8_0_uz_test[_500]_targets.txt\n",
- " mode change 100755 => 100644 mozilla-foundation_common_voice_8_0_uz_test[_500]_eval_results.txt\n",
- " mode change 100755 => 100644 run_speech_recognition_ctc.py\n",
- " rewrite runs/Jan27_22-59-08_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643325211.6916795/events.out.tfevents.1643325211.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.399095.1 (100%)\n",
- " rewrite runs/Jan27_22-59-08_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643325211.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.399095.0 (100%)\n",
- " rewrite runs/Jan28_04-57-04_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643346306.8664992/events.out.tfevents.1643346306.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.541469.1 (100%)\n",
- " rewrite runs/Jan28_04-57-04_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643346306.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.541469.0 (100%)\n",
- " rewrite runs/Jan30_19-35-25_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643572438.487491/events.out.tfevents.1643572438.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2037878.1 (100%)\n",
- " rewrite runs/Jan30_19-35-25_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643572438.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2037878.0 (100%)\n",
- " rewrite runs/Jan31_00-08-55_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643588110.005454/events.out.tfevents.1643588110.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2141134.1 (100%)\n",
- " rewrite runs/Jan31_00-08-55_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643588109.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2141134.0 (100%)\n",
- " rewrite runs/Jan31_05-52-36_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643608732.4243534/events.out.tfevents.1643608732.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2278718.1 (100%)\n",
- " rewrite runs/Jan31_05-52-36_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643608732.job-0074bb36-c67f-4775-b1b6-176eb09b0ba4.2278718.0 (100%)\n",
- " rewrite special_tokens_map.json (100%)\n",
- " create mode 100644 uz_cv8_text.txt\n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "YBb6acjCGMSt",
- "outputId": "a524741a-701e-4ff9-edf8-cebdd96941ef"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "fatal: cannot exec '.git/hooks/pre-push': Permission denied\n",
- "^C\n"
- ]
- }
- ],
- "source": [
- "!git push origin with_ngram_LM\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 1000,
- "referenced_widgets": [
- "f316ac23a859488a9ce156175dc3c2e5",
- "339d2fab53b64a518c6718188a3586bf",
- "c205fcf09e884eb1b210669703d2bf8f",
- "20785c23987842b18134e7f63bc1dadd",
- "5e78f8fc16554687ac5f727f89aa37e8",
- "0a18d6cbba0d4068b22eb8d93751c485",
- "d10474744e314057bd2f1a7a03d8a406",
- "69fe445d32be484592569f3336e0f0a6",
- "390897fbc79e4a688b724c2ef44c9432",
- "4aef6a137cf3447b93d1e97649b9b98d",
- "778f0ba4f6ad4f828893cb0925d69780",
- "28b1a9e448394bf098cf6c1f6fe0ccec",
- "fc0cd38fceea489dbce68fdaf09e829c",
- "5066bf4ceeb84381b50307cfc7f80980",
- "383eff90207a4f59a227e415cd5816d7",
- "287a0ba17432455aae024785577523b9",
- "f128ff19e6334ac58f33ad46bcf5adde",
- "35628323e2ab436e9cd2af93fca8189a",
- "276a1f1ce70649beba493c196d267adc",
- "d7affc19df15496ca9533910af631fa8",
- "7428e83e6ae245ada4547429a93353a1",
- "7222badd90a64c10bb8e2c8454307598",
- "c199a1877a4f4fad9e7352a50aca950d",
- "c66f4713a30c4511863d789342d3603c",
- "c98c2dd5708d4d848939e86a00d88dc6",
- "1c4500d0ccff4babb5fcffc89dadbda8",
- "fa3b6e5e530d447daf0ecb84d5d4956e",
- "225b2e2c8b06481ba13e50de189fedb8",
- "d9de77f6c0bd416db03513ab22c2f5c8",
- "ae811a7dfb7b4b0bae7bed91e849a272",
- "82fa5c91a8624391a2c16b8db4641592",
- "36fd01da41884bdca3a172fbcf772000",
- "e1f62138314b458687cd1c35aa133b39",
- "b5a80f0f38324ad7acf0f4ac7313de49",
- "d9bda94950f24d74818836effc8e4fd8",
- "a9cc24c2efa54689880054d0eba04b95",
- "015a02e42fd8479eb8c5dd974270e0ba",
- "dc6b228594e04ad09915a16aebe6a731",
- "6cb89fbfaf30421c87159c418f346c4d",
- "ac4225de38a34e408691cb3293297d03",
- "25a20c511c3942ee9b53d1f990f4f7b7",
- "67d2893013d841d893ca7bbb34f40e6c",
- "42f2d773781e44a395c9e32b83d118b1",
- "c960a1875987492eb221827d2d7774ef",
- "1027db5a3dd445eebcca28af6491762d",
- "aea199a2c41b4202a9dbce36bef8e35a",
- "139c32b0312c43c99ecd7d1b778cbf7c",
- "ebaf4da3cf244579a80e54c5c4969a23",
- "e9d3506fc9e945229a6a931e65dba1cd",
- "9cd8688dac4546acbac7935ee58325ba",
- "06f4f294c7504fdf9a1dc7c097bb1062",
- "566437009d904788b04da21c9a78e982",
- "a70fc94adb0f47ddad7dabfe8f6449fd",
- "a74474dc0c21463986ea55863591995e",
- "a7ce4661dd0d4316a7c3b2054acb607a",
- "3d4014296e204b6b9790f70933befaf3",
- "2c5c235b9ac94da4a269b65d7a754f72",
- "f63c5c2af67847fda3c4a05ddb182e42",
- "098ac5b85663415aa29c40a1290fb4c6",
- "916735a174434293b6c4ffd8dad61ac6",
- "85467b05feee490da6183fff1262ec11",
- "e770e00a39ad4e2e9948a31eff502ec6",
- "0b21cfd574b5486d8803520301486d11",
- "452c2f76f5b24ea68a22a0f89f5bd5ca",
- "78b37368449a4f909b5d6c5db75ff08a",
- "401f2b218fdc4b25841fea9872b6440e",
- "46da737e06c44c2c831e3ba536059c90",
- "e439ca8584ce41e39b91fe327cbccbec",
- "7f72c46624024f429d579428caa40c7c",
- "c25caf516590405fbb842a9a5ad095de",
- "7e9c82709be34110827b11a54b6780cb",
- "fa683080683448e69c396e4d5431a9ff",
- "9dd9e51fce54495891110ae98ab147e9",
- "e3435075dbec4d93935aa6025f5c1ef1",
- "0d75ab61bcde4e83b6720b92afaf9dca",
- "331f9e5eafb9493dbc958fd15b5fa30a",
- "bf3a42407e1042e299beab983ab6bdd2",
- "50a26a6fdd5f4095badaa472dc9a7799",
- "cedcea6b427e4955a48f71811ed4bff3",
- "1ed23fe4e12f4432aaa894cd7424360a",
- "0ca95af183f94190a72b02bf3e370abe",
- "45d4827aae9a44fea35be4233756c838",
- "b042fd5238c047f8a94ff3387ca27c90",
- "b761553b0655480a9ee4999b644c340e",
- "eac7f83fb5944d8a9924a42bfe6c6f75",
- "79c9f717d15f4cc5974bb7e7e863e016",
- "02b18f9952d041bc915803223739513f",
- "d56e7a7158a347dbb55e88924ceedef0",
- "ca8b3df6fa104d63b5b53a62dc8b9531",
- "1f03ffa9c65a479d91e5d78a975f2779",
- "af33d8c42c3547c1946f49735a013ac0",
- "816f4852c0f54163a1dc4e8a78afe909",
- "bad4919bdcc7438e928e83ffe717acb4",
- "88ea2bb60723446e88d78370ca8daece",
- "fcd3a035beb341c783928eac9597cb80",
- "63b5fd77f01444a082b97fab35fc2c34",
- "f569f9d3290b4cdb8b9c1b6c50c7c8ed",
- "b598171a01f8494ca4469b8998014e2a",
- "1861e12b5b6646d9940c33da79d262bd",
- "4e6bee0348b641228399488467407534",
- "b5733f20353d4a6fb2f01fb1852d2a13",
- "2d66dd2198cb4417b8bffff155587c29",
- "e0688ed3c2f549af80f45cf2d7001470",
- "792e8c08580b4e0d8a9a2c278ab096d5",
- "ee1bf17c1a9d4e27a69fb7340251150e",
- "348a50765c904eeea19ae5c3e39213da",
- "bc7724d5c2bb4d63ba80c2bb503e5c38",
- "a29cc061f4a54e3baf29ff2c99bcded4",
- "8c0edc5b8ba547829d20003b5d2a499a",
- "ce67287d749d45b0bd8b61d0dd5ae710",
- "7643a1976d844f3eb64a364e2333ea5d",
- "fd5f5e1224c342d994934934b751f482",
- "24da601521fc4cfc8e8b2550e3c9a4ff",
- "3fa24336e5964a9aa1fae1590da6e0d6",
- "49c5a0f77255449593c55ea3df837fd2",
- "6c217b9e30414a2aabec01b4416c5f4e",
- "74d133f23382433aa193769395c2a648",
- "f1de86c5c8ce4c90bce1640390ab5449",
- "6d725ecc270e4385a97feee19d3af108",
- "c30cf8cdbbae4b899c1b2b2cdf52417d",
- "021db95ea39a473fa7f81508679fe329",
- "8a951ee29c3148bf8ca3bf7265538346",
- "319e624dbc6347319847b022f6402890",
- "0a37fa4e7ae64d32903d51f6133662ee",
- "cc0b65d51a484a3687aa657e238dfabb",
- "9e0dffd91b154278a48f915cb0765847",
- "fd8feb9c03b6491bb815b70f18d8bea8",
- "bbde411fb01c492f857c0ac27672d06b",
- "b3e09bf7c325451186c224a61a43adbf",
- "65d44e7adecc4b9898f71e57fbcaec2c",
- "669ecea110fd462b82df158ed374808b",
- "c0937eb068be4fa3afecc3dd09a74f90",
- "4835210355f343a1a4116c1e00616946",
- "d8730f7d7e544c7788a5434ae9ae01d3",
- "3988006596f840379e033fe95095e204",
- "4c20cc41813841cd8d55a162bde021f8",
- "92831f3f308c4f8193b3ce3c70a6b0a7",
- "be0fe51a8e9044efac4c74c76e6901ec",
- "1003f117e73b451b8ed54bba35b2c3da",
- "0e3ee4a0e78545a6a9819d943af1173c",
- "622964bbf4f04a788d6be682209c93fe",
- "520aa82928ed4d7693f7db7387c85528",
- "627e167f33b3449ab26a813329d4ad38",
- "a9c7473923c44b5fbc6294927edc46d0",
- "22d90f43512b4801b7dbff7a5118d383",
- "01cf5627c3614d01aea9a1baa765407d",
- "9fddda4595fa404da837265d457f9a15",
- "623cc031f54f424bb4dbace4b3ee7e92",
- "5d85b6254732449383117709c76e64a7",
- "7b0eb0b12dec46bf80e70d4395b7e501",
- "6b1d8f8d77b1482f9366b212069c038c",
- "b23d9336851849238ef259f7b24bfd22",
- "635c198aeaec42c68517548243574c57",
- "b30030bbe82d49bf931e23cbf0f428eb",
- "6220d83318c34fdb91357da2a0540a4e",
- "a15da1926718415698636086568bf2dc",
- "bb50b56f51f2415c8b2312ef03958b48",
- "045265924e254824aa98c16ef72aec34",
- "4447340c82bb492ea94db957bb7247e4",
- "fe557fe2a11346de8718d6c1bbbeca18",
- "771052b9bf45415c8271f901c883b35e",
- "8962dc90ef8c41579d11a7a6971fca94",
- "fa785a5a9b75436385e3fadfdd9bc41a",
- "cf1089d7363944e39507184c31be6501",
- "203081ef9b6940bfa62d8203f267e1e8",
- "bcf99faf33ba4cf79da9a7337d79e752",
- "696c0bea89394652acc2318d0d8b5030",
- "036b34a7d10548bbb1b2e9c76a21c322",
- "cca3c69fcfc54986a1b2cb8717a74fce",
- "ebcab01e231c4bc9a710fda49c7f578c",
- "cc25c28da2644bd0a4524a2c56561788",
- "1998a7e652d44f8f841f6e9c0fea7c5a",
- "4d164c04d67840bc997f8b5e7b3210a5",
- "f75fe74ec2324e6e9543da2330bfdd5d",
- "5909005a84724f8fa82da3a33178c28f",
- "e9e0d582daa74443997992cd61658a8c",
- "bb2066381def4f8081fb57d81f69aba0",
- "26278139fdeb4ec2b37d2480a3076f9f",
- "7f9b79fe583f4dc8b0e5067c027d5d67",
- "4a4d1d103a1448219dde7cb1071a28ca",
- "544bfece9b3040cfbbf9cca9da09b0ee",
- "796671c340a946709cd8e76e085af3c3",
- "493b166cdb7a485687adc2da4ef411d2",
- "76125d0ad381477399c16a8666763a1c",
- "82f1bd221f2c4da8983fa4ec476058fa",
- "4955f50b60884ba996182a5947d27850",
- "0d76f65887b5492b91489f6ace8a6810",
- "fbbbc7bd23ff4d6ab35ae78801155db0",
- "edaa99542f024b669ce64b66de1db625",
- "4e30b50b41b8427e8e97a463cda5e62c",
- "63a3944f11244b97bfea8a812a0b6757",
- "162ee37d3785481e881576be343d47bb",
- "d286fbaa29ad416b8522e7369479579c",
- "a0fcc8435fca4926bdbe8ffbb56a92d2",
- "f1ad52b89ed14169ab0f6912c6628a62",
- "86c818b35d7941c69a9930bf4069961e",
- "c910706aa43d4383b63fed6bcbe7c5c4",
- "f23c017889cf4ad587278f3bac5336a6",
- "892c70c1da274a7f93f5cc11dfef9b99",
- "57f5208e79c543569782994a2d7c37e3",
- "210dc99e61ab44369df83741b33fba6c",
- "1551d881f5bb41318643f3edaf2f8ce9",
- "4a3cd47c7fd84e7b8a397138edf6674a",
- "c2da0bc59bab470d81c472d9bcf87866",
- "7c8dd7fbe1904f4d83d636f47f11ce33",
- "7a8ad06eee914a77b97ac58cfa2a9583",
- "d12bbb19c98340c48f41574ef3a61a11",
- "6cba85462dd04cf7bd730cc5826d0aaa",
- "b52fe506342844c489f85d1a2737127b",
- "17282bf0c49b4c54b1d1c127c2d0a214",
- "7378b46dbc7e4822a4ec54aae538b545",
- "28a9ad0d91e143ef981e534ddff38b9f",
- "df1d84fcdcd3413cb78c59e9b8f9b4ae",
- "87a11b5fef034c298eeebb642761aca4",
- "780d9b87520e4c9bbb49bcac29fdec24",
- "c83ff669c5644559b28490f63695c455",
- "b6cff2ae73dd46989931528ac6d80969",
- "8f567c9ca49342db8b89dbd66e6cf329",
- "62843d3925a8435c9e963c7468208b03",
- "548c01f0e16a45fda842f5e16553952d",
- "6b1826985fcd4cd8bf5784c3a18cef07",
- "558ad81105fd49459714c7f4a420dbca",
- "8ff1480376a64ee5b95594ff93c584cb",
- "4115a3a61c604a6bbbf4c2d1e64d6ff6",
- "7faf25ba200045259f3c017248ab5ae2",
- "ca8803b7a77d4dec864dcaaf00678017",
- "f0dc1595cdb2471484ef80713dcf31df",
- "fcd46bee99c84615b937111040c109a6",
- "b5dca6bd886241c18a80253d41a2d4ee",
- "0360f1614a384242acf28bbb1a7db46f",
- "5d7e18fe043d41c3a47c00ea09070c12",
- "dc1875ae4f9842f5849b26348431af1c",
- "c6a10842bafa46899fa74736e205c0d9",
- "964d9ff7a7d543e194b2ae216cbe1f6d",
- "aac5f3132fe747a8b71ec6a3049bf687",
- "d26926bff8254773add6fd9ef20fc36b",
- "9c516df762a14f81bb97009e3bf8b9ac",
- "06e5fe3c95154565bd8a282651b58b5a",
- "cf673abf422447d28cdb4f7df444f5c4",
- "395818877e6b40efb4f3be475bd2be1b",
- "335eb1e485ee430c91b9d81e573e8646",
- "d87f940f53444fdd984ad482961010a2",
- "2c1b2a97589645bdb6577d7dda67cd72",
- "f7f0f023bd364a018cbb724540bd1faf",
- "fd1b4cdc5714432082fd18897bad1d77",
- "bf7e0e1c96f7469fae325a7d3826fb71",
- "f9123bc103c148b79deed747139ffc2b",
- "26e95d4edd724b32bac1b20b93aead6f",
- "5b0270e27d3f40b5aacd37d6ed231b49",
- "9c9ae62f6c15413fb2b26267fe0db672",
- "f231195213fe4db596daf36d770cde3c",
- "f2b5c9b732ad40a687521a208b54caaf",
- "b5a6d09bad89438ab39c9902fc95fa54",
- "2c3fd2c352134e16982a38cdf639d9ca",
- "0f8931ea0d2140abb299c4dd2b93471f",
- "abbc919bde7443a3b52d60949bcd690f",
- "d64862f3ef424188b5c68c0e9b28eb2c",
- "d664a46434834af38980622a71197393",
- "b01f37adecce4017ac18e788cf106f04",
- "fad91057508e4a44925f289394022185",
- "e02bdac296e94b4f9742a3094382aaef",
- "6891d8c4bb2449109732cfeef6d7b253",
- "b02b45ecb2d043c9aae8355287f7897a",
- "fd573b6535804bb08e2ed41dd6094ed1",
- "eb403ea9e301445e9a878a410b72924f",
- "ae4e43159adc41d0b4706153936c2a22",
- "b42854f7fac441b99f7c71a90eef439d",
- "ef1283d895084f4f94722ba0e2cda412",
- "c323bfa53fcc4f9a9d005acd0b805760",
- "76fbc2af120c408a860942d5f8fd7e6c",
- "474cc0c4c21f401ea51619925554d42f",
- "cfe758d125704bd68f12be722819b9c7",
- "fc7967ceb16d47b7b1b204b77860f29e",
- "82dde95eb3d24dcf9d6061a32a244f25",
- "3ffb6979c38740698076993ecf3cbc85",
- "4c4cce0dc87844fda2dbbd4d38295618",
- "94642d1ae9714dafa6fb4cf8262e4067",
- "cb3ef1a647874f2c9af119649c95bfd7",
- "0584e7eaadc94cfe98c6065c53383c78",
- "f609df0e80f041c3bad7cf95dd14a42b",
- "79dc9086d3f54047a71e7fbd0e23560b",
- "e41cbfb0538240fc8b17b3e6187678f5",
- "8714f27c47894d738a2943f88a550bdd",
- "3fa94563ecc94689935074631e165ea3",
- "cdca5effb1f742af845d6f1c516da483",
- "6c7bfbfc7d5b46398c1857d9315a72e0",
- "e4fa79442be74d0d80e6fae85ef3ce2d",
- "2dfadf5e51be4cf6b5fa0078a9ba0c97",
- "649c69516d1e416d9128bd6637c48b93",
- "998a4c6ea7b74b57bb9709e91f29ad92",
- "755b82222aea454c9c75ab893d2f9061",
- "e3fe2e1a646b43e0a87fcdbc155b1678",
- "9f5e0318bf154c5ab27e042c49003f90",
- "e20d35644101435baaa4dd015c9d654b",
- "8437961316664c3d8ae83a8e83a63a91",
- "88f532d14ef84e7ca4a76f79694d6e86",
- "55523d655f884092b187e22931b8bee0",
- "bbc393717ec2498c8bbee947f2190669",
- "3d639de5599244ee8b59de81c327bb5f",
- "83e2010aa1654195a097421afd2407a6",
- "4f2862571fb6480287b8b34b54c0e80e",
- "7016c9d5e856495bba8c011cf4814577",
- "6ce0c8d492f742e6873e5741b98a300f",
- "ed3387989ea641abb3d431f7755c4e6f",
- "eec215c815964b8698e8dfcdf8d1f302",
- "1663fda7fcaa4001984f0aa0d7795899",
- "f4e7142505a8402b9e8de1cce0404ae2",
- "b1551d586b154398acacf8581047fe4b",
- "8073773bd9a142fa9cc12ea521c39d95",
- "8adec177300c4149ae6908aefc14cc32",
- "ee7601f179154ec9b1edf8dc421547dd",
- "850c36fd567f487c9cecd6f0e1f6a659",
- "123ccdddd0754f1ba5b9fb62e5854fca",
- "42240ae346254c4fb87a03f90c6d9e0d",
- "eb90d82aaf9f4f56bbd14395e5c2fca9",
- "c4d258f909cc4cd7ad353dfda45064be",
- "c9bb3ee52dfa4c11b782480caa8b8649",
- "e08311c69cd0402eab772520d310fb3b",
- "7f4c524057ed439bacdc75182a0d7065",
- "3caa5687ffbf4413b5cd119cc18b1722",
- "ea7043f048a2424b93e73edb74edb3ba",
- "4a32b0115d144a65988eec81a693938a",
- "1d702e749adc473dbae13dfa2d52523c",
- "4d20f0629ce2470c9de067fb5a3d4e0a",
- "070270b2dd4e476c8e6ce4d49f1782c2",
- "af7d8f27bbe24ef98099b028c5558e26",
- "e30dcc4a3d0d4b55969d195134e68280",
- "090d195731e44773962cdd679e862a23",
- "ac6ccadec7044f55b07a1ad024ad40b0",
- "0114ed884b2a4ce880f5b7418f23f36b",
- "52c46d17158e4b50839e00ce0944455d",
- "0018e31bc1614de9ae4ffe72aa45a1f6",
- "8746e69a09fe45478106a9f53781b14c",
- "1686858e8df742db91b639e52564322c",
- "a912249a32644b95a177d50a1572bcbf",
- "f39eef7149334c569a54c4e96e8fb18f",
- "149dc14dcc474fb89c7cd72d02b5072b",
- "6440c53ae329402fad473bc68abb0a96",
- "5be2f1ed8fdb4f2ea068f87fc3ec69f2",
- "161f2557577e4dc3ba9b3b4024897810",
- "0b5dc3861295498aa9644dce81845590",
- "08ee94562ab141df8c6836b61ab754c7",
- "bf5eb3b4c01e4a04b976447544b079f7",
- "9913d08dbfa042b182a9b752fcfc895d",
- "fb055a4945b5495e98601725c63c659c",
- "b8a1b69e60ea4fac85b4b6f8e1e0766c",
- "07e39f8ee38043b0998367ff04717b59",
- "cd4fded5f3384cf5a61765712abb78af",
- "b17ce6936a4541bdb7f9d8d47d3d336a",
- "bf56868ee0d549fabaf3b9690c8ac542",
- "5f65a5736ed6481990f4d7032f25cd16",
- "ae56dd0a32794e268d64d02ba8dfe32c",
- "5b34c6ef41b748b98a5186b40b75fc7b",
- "f8dfef8b602243ac83010601c5b04c13",
- "32f001296cfa40b1a3c4ffb5eacf6930",
- "07453aa36c744a33a915b064b1e86eb3",
- "8cd919792229445b9543da84533cc47c",
- "ce1a0db85e4443eeb5006e61e9cc1cd1",
- "1b519bc5ebf34239b48913992a5a8b5e",
- "6515b0f09c174c629bb3699ef6879280",
- "bc4377f558ae488ea336ff3c7dc440ec",
- "f7f83aafb1684fa593b5fad59bbdd58d",
- "87587e11cb4e45ceb677cd1306237c52",
- "b663a4f9ff7849f2b72127221b8b4c98",
- "958c958c5e0e4173bb91dbedb471cff4",
- "752b5408fc9546e380724529a6dc9474",
- "b93f35317cfd4826ae187d36cb84b4d4",
- "9eaa1afcbc514888ad4b67ed26240553",
- "5b3fc9a74beb4954a8fc470e2fa08095",
- "18f43565e2894dad9d99394a2b69303c",
- "8b1397bb460b431ea26e7dd8f9fdf009",
- "9b1e1d03f2474a069216596c07dd1a1f",
- "0f253f610d7f4cb59de6fc4213c506db",
- "7d5154b4249f4f92bf1d056b4f065d9a",
- "2c0e6080205f4f60b47df5420c5ccd33",
- "735a1063b43044808bfc067388f1f1f3",
- "1d48c7ee7d2f4ad2bb10f4f978ddfe1d",
- "ff06ca6dcd71408c9ac0c3faac7bd19b",
- "b167c654910245828d6fbdcc0d2162c0",
- "20b7c2b03df94e0d95a170798a6a9018",
- "478751b129124e3c9ca97ed948f0e6f5",
- "d01a66ed173746bc939cdb07a839aaf9",
- "73e2dc8b1e1a41ac94b9918f88d500fd",
- "dabca95c895a4d52b8534c47ef7d7368",
- "6c576e16b2e841e8b7f784c129a1807f",
- "9eb0b4e7af464d718f339eec242c0c3a",
- "090ab228cec149cf939b862fa4fe869f",
- "90fb128d34324eae8f57f7a0e3e4a75a",
- "53a4d93060544aaa9a6bea7b6b90173c",
- "6a337186c7504b94b22daa8a424c9db2",
- "00c98fa0678241fba30ada0c670987cd",
- "65a6307cca2b47799d2f87116a997e27",
- "1f531f949b614c9f84ffb29b946c11ff",
- "4c39faa37b2349c2b52fe1616d58f591",
- "49f3ea283eea49c887d17ec659b7ccc5",
- "51c2c44622da48079f5ebc7d4dbc709a",
- "efa0fdbca21d46e4823ea9479bb09cb5",
- "12144724d2f549b5a6a6bbda68a3a250",
- "9d4b4421006a4f9fb654cb9fe160fab1",
- "a1112a7f2a9c40ce9d7a0df0cd99a089",
- "99a13c7404b34056b15f25f9def574a3",
- "cc667df4d3cc4319954f59c5fe15f3a8",
- "a0af8ef063e644bfbb29a05f54ca900a",
- "78f0a961ca844fd69f4ea16c02d42824",
- "fada6325a0104111abbaf64126b18e65",
- "f7050ba54d8f44f9bf91ca839f1b72fb",
- "a8846a3bb9534c678d3711fef5f6fae7",
- "84c3d262815b45309e4ce9fd839a4cf1",
- "914c505716444440b2713d9418ff56a2",
- "7e7d287613da4681814b0a4a31ff1fc0",
- "55796f151eb1477b813c147f8265b03f",
- "c171b5c2158b425fbfd91e0171ab3271",
- "957f5435a6374fc2b3b431e6d551f05f",
- "2a6129f066ac46edadb195b4fdc8b8b0",
- "11dd4bc82f944d589d585cfc8a5b3ce2",
- "eae7a46eafdc4241bc28acf6a99dbca9",
- "eb98e7310b664e2e8beedeca8dae2560",
- "0ee929b55093452bb5bb4746c8a68434",
- "48822383cdf644e490c0e1971e076665",
- "9459c245d55d46838ff7411999bb1961",
- "80eca9e3398d44da896b6318ba0ebae3",
- "934713b7f4b7444f8c67f00a6cf2178b",
- "b1df6e592dd34434949747e3ced43d44",
- "8bdcca9371f6434e8c9ece6b4be2374b",
- "87dfa2eb2ec64d39847598ce750b3b20",
- "67e3d2d994c04cab8ea3830f1e45d2be",
- "bb77f6a2e85447669ecfcb22c02de224",
- "191eef9c3f244a58add7fa72742eac61",
- "bd2c517b5dab4da98406c6a6e8c0a5c5",
- "f9086d1d3435445cb1b1e9a0df5a304b",
- "a2475db0c8e64f14883921a377365005",
- "2f68e2cde7274a9ea05d71d77afcca04",
- "256da2fa9c1b44219c76dc5ca9697ae8",
- "235a4fa8fe2f41f99cc0ce2c37d3bae3",
- "ffff50eaf4fe4afcba80925b5912bd9b",
- "8560fb84e75b429d998987726f6353c2",
- "26a7b02c748644d98362748bcd41845e",
- "f1540bd240e541e1853a116ea7f3da08",
- "55eb4f52f4ca4f8e8a68abe3e8927a58",
- "44ac194fdb28433c80fb39c4fcd32730",
- "8eef1bd563434b879a45b1f8ad80c30d",
- "0d86cd7a52874425bc257c3c6dcbec9a",
- "936b7fbb9c36484ab788159f5feb85b9",
- "48035b91472c41268dbf1eb70c11ddb2",
- "6bb54a01194f4551aa60c62c286ac4f5",
- "8e35190d58b3452692253098940cd373",
- "d42728de03184eba9cdfb0f097a73442",
- "04da404404af483dac479e986dec4d49",
- "118fab51e26649199498f31f8c1cb6e7",
- "b468c21beab04cc4b2ddaf840c285aa8",
- "4bbe29246dfe4f7790aed2790e8cb680",
- "9ef39cafcb8a4db99800b47e7c175037",
- "379408926ab44d4db0a042d58783318b",
- "483e5b6cb04847e7a2f04d763d5db91f",
- "0e3f2b649a144eb491a04b6d8e31476d",
- "962789df25f54b61aa6ae3f5ba8cfc96",
- "cea7bd1e63074e3592b2a1b7d8e35fc4",
- "36813fd8f3364d499256cf4120dc770f",
- "3a45dc15c4c04512ad1da3cc800d00f3",
- "981473403ed44f2aa5e2291f650534ef",
- "58e3c45f5f754c49b28ff22da29d0117",
- "ef48db93005e4dcea8c3c13798499a37",
- "accb81bde5204c77ba61b80ab4092978",
- "5a9231c62b1d453a970299282f59c78f",
- "787c7d716d384177b70a5a8145d42185",
- "df139e3be253465eb325e9efea73fa6d",
- "1bcb9dc6c2ba4535a71914a3e0c9032a",
- "0c8741e8071d49a68da0f7ee8be058c4",
- "f853155f45844423832d2b6bef895235",
- "04b67d97fd794171b676ec2ce631eb5e",
- "6e21c8d9550a45ff8a97eb8b6714c200",
- "0b9ea926ccd24f059e111894ded9401a",
- "3fc7e20c6d0448f0abe57733cf43f44d",
- "83777a4b87924aa09d7d9593d90c2ed6",
- "a7042dd5d7de4fd3895f25800977c0ec",
- "34196051af324531b8680fc803c99c46",
- "3224cbe4c3994f40bea760b1484ed30a",
- "dab4f081ab08406fb6d944d0d85d3ddd",
- "6ca6acb0ce8e40e5a059c1bd8111a66c",
- "24c53946957b486e81369d005f6a0999",
- "86b8f5f51a4c41fabc10ae3d4f39f9da",
- "0db0b0a5a68a427494a648501379ed11",
- "14c60a09aecc4d26885bfb42e3f364c6",
- "3b4447dbc77d4295ace660f589bb5d1f"
- ]
- },
- "id": "nQtMcFzLGTuY",
- "outputId": "83ad8560-1581-43f9-cf66-88303d2a6c1c"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_deprecation.py:131: FutureWarning: 'Repository' (from 'huggingface_hub.repository') is deprecated and will be removed from version '1.0'. Please prefer the http-based alternatives instead. Given its large adoption in legacy code, the complete removal is only planned on next major release.\n",
- "For more details, please read https://huggingface.co/docs/huggingface_hub/concepts/git_vs_http.\n",
- " warnings.warn(warning_message, FutureWarning)\n",
- "Cloning https://huggingface.co/lucio/xls-r-uzbek-cv8 into local empty directory.\n",
- "WARNING:huggingface_hub.repository:Cloning https://huggingface.co/lucio/xls-r-uzbek-cv8 into local empty directory.\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file pytorch_model.bin: 0%| | 8.00k/1.18G [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "f316ac23a859488a9ce156175dc3c2e5"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file model.safetensors: 0%| | 32.0k/1.18G [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "28b1a9e448394bf098cf6c1f6fe0ccec"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file language_model/5gram.bin: 0%| | 32.0k/65.0M [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "c199a1877a4f4fad9e7352a50aca950d"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb05_08-15-45_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/events.out.tfevents.1644049005.job-…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "c66f4713a30c4511863d789342d3603c"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb02_18-10-05_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/events.out.tfevents.1643826038.job-…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "d9de77f6c0bd416db03513ab22c2f5c8"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb02_06-54-25_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/events.out.tfevents.1643785646.job-…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "36fd01da41884bdca3a172fbcf772000"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb06_18-52-28_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/events.out.tfevents.1644173767.job-…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "015a02e42fd8479eb8c5dd974270e0ba"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb02_16-57-51_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/events.out.tfevents.1643821174.job-…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "dc6b228594e04ad09915a16aebe6a731"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb06_16-03-20_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/events.out.tfevents.1644163569.job-…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "ac4225de38a34e408691cb3293297d03"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb05_08-15-45_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/1644049006.003602/events.out.tfeven…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "aea199a2c41b4202a9dbce36bef8e35a"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb06_18-52-28_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/1644173767.9556613/events.out.tfeve…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "7643a1976d844f3eb64a364e2333ea5d"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb06_16-03-20_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/1644163569.9492478/events.out.tfeve…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "fd5f5e1224c342d994934934b751f482"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb02_16-57-51_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/1643821174.2161925/events.out.tfeve…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "74d133f23382433aa193769395c2a648"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb02_18-10-05_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/1643826038.566184/events.out.tfeven…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "a9c7473923c44b5fbc6294927edc46d0"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb02_06-54-25_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/1643785646.6555233/events.out.tfeve…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "22d90f43512b4801b7dbff7a5118d383"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file training_args.bin: 100%|##########| 2.98k/2.98k [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "9fddda4595fa404da837265d457f9a15"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Download file runs/Feb06_18-52-28_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/events.out.tfevents.1644275949.job-…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "6b1d8f8d77b1482f9366b212069c038c"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb02_16-57-51_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/events.out.tfevents.1643821174.job-699…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "a15da1926718415698636086568bf2dc"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan27_22-59-08_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643325211.6916795/events.out.tfevents…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "edaa99542f024b669ce64b66de1db625"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan27_22-59-08_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643325211.job-007…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "63a3944f11244b97bfea8a812a0b6757"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan28_04-57-04_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643346306.8664992/events.out.tfevents…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "c910706aa43d4383b63fed6bcbe7c5c4"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan28_04-57-04_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643346306.job-007…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "1551d881f5bb41318643f3edaf2f8ce9"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan30_19-35-25_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643572438.487491/events.out.tfevents.…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "4a3cd47c7fd84e7b8a397138edf6674a"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan30_19-35-25_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643572438.job-007…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "2c3fd2c352134e16982a38cdf639d9ca"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan31_00-08-55_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643588110.005454/events.out.tfevents.…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "0f8931ea0d2140abb299c4dd2b93471f"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan31_00-08-55_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643588109.job-007…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "fad91057508e4a44925f289394022185"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan31_05-52-36_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/1643608732.4243534/events.out.tfevents…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "eb403ea9e301445e9a878a410b72924f"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Jan31_05-52-36_job-0074bb36-c67f-4775-b1b6-176eb09b0ba4/events.out.tfevents.1643608732.job-007…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "ef1283d895084f4f94722ba0e2cda412"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb02_18-10-05_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/events.out.tfevents.1643826038.job-699…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "c323bfa53fcc4f9a9d005acd0b805760"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb02_06-54-25_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/events.out.tfevents.1643785646.job-699…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "474cc0c4c21f401ea51619925554d42f"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb06_18-52-28_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/events.out.tfevents.1644173767.job-0a7…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "e4fa79442be74d0d80e6fae85ef3ce2d"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb05_08-15-45_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/events.out.tfevents.1644049005.job-0a7…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "e3fe2e1a646b43e0a87fcdbc155b1678"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb06_16-03-20_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/events.out.tfevents.1644163569.job-0a7…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "090d195731e44773962cdd679e862a23"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb05_08-15-45_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/1644049006.003602/events.out.tfevents.…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "1686858e8df742db91b639e52564322c"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb06_18-52-28_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/1644173767.9556613/events.out.tfevents…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "f39eef7149334c569a54c4e96e8fb18f"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb06_16-03-20_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/1644163569.9492478/events.out.tfevents…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "08ee94562ab141df8c6836b61ab754c7"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb02_16-57-51_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/1643821174.2161925/events.out.tfevents…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "07e39f8ee38043b0998367ff04717b59"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb02_18-10-05_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/1643826038.566184/events.out.tfevents.…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "cd4fded5f3384cf5a61765712abb78af"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb02_06-54-25_job-699ba53c-fea9-4eb2-81af-a97f440eaa45/1643785646.6555233/events.out.tfevents…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "bf56868ee0d549fabaf3b9690c8ac542"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file training_args.bin: 34%|###3 | 1.00k/2.98k [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "bc4377f558ae488ea336ff3c7dc440ec"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file runs/Feb06_18-52-28_job-0a778896-a7e2-46e9-bcf5-016f91f242cf/events.out.tfevents.1644275949.job-0a7…"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "958c958c5e0e4173bb91dbedb471cff4"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file language_model/5gram.bin: 0%| | 1.00k/65.0M [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "9ef39cafcb8a4db99800b47e7c175037"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file model.safetensors: 0%| | 1.00k/1.18G [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "accb81bde5204c77ba61b80ab4092978"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Clean file pytorch_model.bin: 0%| | 1.00k/1.18G [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "83777a4b87924aa09d7d9593d90c2ed6"
- }
- },
- "metadata": {}
- }
- ],
- "source": [
- "import huggingface_hub\n",
- "repo = huggingface_hub.Repository('../xls-r-uzbek', clone_from='lucio/xls-r-uzbek-cv8')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "8vtXBy__K3jh",
- "outputId": "5ab2b9b8-d853-4b40-c6d6-92815553519b"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Nothing specified, nothing added.\n",
- "\u001b[33mhint: Maybe you wanted to say 'git add .'?\u001b[m\n",
- "\u001b[33mhint: Turn this message off by running\u001b[m\n",
- "\u001b[33mhint: \"git config advice.addEmptyPathspec false\"\u001b[m\n"
- ]
- }
- ],
- "source": [
- "!git add"
- ]
- }
- ],
- "metadata": {
- "colab": {
- "history_visible": true,
- "provenance": [],
- "gpuType": "V100"
- },
- "kernelspec": {
- "display_name": "Python 3",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.8"
- },
- "widgets": {
- "application/vnd.jupyter.widget-state+json": {
- "012b09b271a842d0a7f1cd1260654c82": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_6a40faf77bf445308534e7acada6bf0d",
- "IPY_MODEL_a62ff1ee03dc47c9834b43720df991ea",
- "IPY_MODEL_03d00b443bfd445d9286f64fd8556031"
- ],
- "layout": "IPY_MODEL_557063bf861648f7aefacf71aa53ea9b"
- }
- },
- "02016dcc44994c15b69e7f2c4dd0d9c4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0204a7bc668746a68f6e5e5632753c1c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d3b5f5a0d35642e0b606ac63c38f88fa",
- "placeholder": "",
- "style": "IPY_MODEL_7ce84a97d72848c0967f732734afdd68",
- "value": " 4.55k/? [00:00<00:00, 87.8kB/s]"
- }
- },
- "02519344818c40d0b961c5ea210a5c62": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "03d00b443bfd445d9286f64fd8556031": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_716dc4ab4fe74abab49f3c0f009357f5",
- "placeholder": "",
- "style": "IPY_MODEL_8a669878b8354867944e577860910001",
- "value": " 3478/3478 [00:39<00:00, 86.00ex/s]"
- }
- },
- "059588e34a88476eb6bbc1860ddc27ef": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "093927de0d86406290365759e88fd4e7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f6e777f3a1684a7da3efc63281553b5e",
- "IPY_MODEL_609781a3f55d4d3dbf0b3640972755fa",
- "IPY_MODEL_8783792878a64402981a416989924348"
- ],
- "layout": "IPY_MODEL_92e295e353624110880cff6835b9e119"
- }
- },
- "0a7c2124936345febe50288a476a12a6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f28c64f34f9540b6b6bdc765c84e2307",
- "placeholder": "",
- "style": "IPY_MODEL_02016dcc44994c15b69e7f2c4dd0d9c4",
- "value": "100%"
- }
- },
- "136f973d9623421eb38e09c73c6b6810": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "1ca82f9af3ae423096661a1ffd8a165f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ce429683f48349c083e5fc3253a897d7",
- "IPY_MODEL_acc35dfdfca542828d1bb02cbde15dfe",
- "IPY_MODEL_aa92ff120d9c4dd68ae941d7a1f33a81"
- ],
- "layout": "IPY_MODEL_731a283141f642b9ab5bf9f7053381d2"
- }
- },
- "1cdac9cda666466ca1e09f32661d40ed": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "21af0f39c0ce40a5846b980f98481940": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "2b7e52a9be904663ae74226691de6ebd": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "2d2b8b8d5774494aa73d872e9a4c10d9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3ec9917890f4452883bcaeac444d056c",
- "max": 1269737156,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e9531fcd48b74929bfdb45cd3f3315e7",
- "value": 1269737156
- }
- },
- "349c9e8b2a8846c1bff5a03d2a28066a": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "367c85905a024248bce6c620b822b2ee": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7ea310732a56432da1a095a8d30edc1c",
- "IPY_MODEL_2d2b8b8d5774494aa73d872e9a4c10d9",
- "IPY_MODEL_f4af6a0756e241e49e5d325f1bdb18b4"
- ],
- "layout": "IPY_MODEL_2b7e52a9be904663ae74226691de6ebd"
- }
- },
- "379128a308ab43ee9e785e234bb94049": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c0919f3c8d594911815ce63273f7fe51",
- "placeholder": "",
- "style": "IPY_MODEL_69f2a9e473534148b96b2e9bd639a087",
- "value": "Downloading: "
- }
- },
- "3aa317d2b42e4674b38dafa87b5599c5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_0a7c2124936345febe50288a476a12a6",
- "IPY_MODEL_bdcf9380af5d4601b9b2de84b06ecb40",
- "IPY_MODEL_b9c5532ffabb44078de8a6f76a4b8be6"
- ],
- "layout": "IPY_MODEL_7732bb1317f940faa455f992f4fd2b26"
- }
- },
- "3ec9917890f4452883bcaeac444d056c": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "3f0c587f7b764d96837c8e16254aab12": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "4246da00789f44e2abce952906bde6f1": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "46c8681bd36f419495d33b06c96311ed": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "4f81e460906a428f9f74a0aa469ba63f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "557063bf861648f7aefacf71aa53ea9b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5ba2a38c71e64253a4fd39cf7d3b3326": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "5cd8c74ba2e845d498afdc1c25009767": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5cff6b2dd6944c59b8c2f205db5f49bf": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "609781a3f55d4d3dbf0b3640972755fa": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a5777207c788498fb4ac4900af91d7cf",
- "max": 1,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_890ff54dc35e460b9108e2690966fafe",
- "value": 1
- }
- },
- "6323e35581be4b338a904266a5e85005": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "69f2a9e473534148b96b2e9bd639a087": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6a40faf77bf445308534e7acada6bf0d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_21af0f39c0ce40a5846b980f98481940",
- "placeholder": "",
- "style": "IPY_MODEL_f6e0ea791e5a44abb5d5891bb3e254ad",
- "value": "100%"
- }
- },
- "6ae3b3139e6641fc9e62ae5744349add": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6da7072e7f634a3aa2927fca1bcf38c0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "6ec3c80319fb45f3b6f7715049c9bce0": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "716dc4ab4fe74abab49f3c0f009357f5": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "731a283141f642b9ab5bf9f7053381d2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "75b26f4a95d24e9d8939d1f7b376eb51": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_02519344818c40d0b961c5ea210a5c62",
- "placeholder": "",
- "style": "IPY_MODEL_e575e46791b24f449b8afcb773e46dcc",
- "value": "100%"
- }
- },
- "771530ea22364f1ea8963e2d542fcf49": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "7732bb1317f940faa455f992f4fd2b26": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "7c81059d35534b799623afe872095cac": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_379128a308ab43ee9e785e234bb94049",
- "IPY_MODEL_ff8e746cf8ef4f988617b8d4c0dd3c9c",
- "IPY_MODEL_0204a7bc668746a68f6e5e5632753c1c"
- ],
- "layout": "IPY_MODEL_84361b363998428a87b9e50b6625cca9"
- }
- },
- "7ce84a97d72848c0967f732734afdd68": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "7ea310732a56432da1a095a8d30edc1c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_771530ea22364f1ea8963e2d542fcf49",
- "placeholder": "",
- "style": "IPY_MODEL_1cdac9cda666466ca1e09f32661d40ed",
- "value": "Downloading: 100%"
- }
- },
- "84361b363998428a87b9e50b6625cca9": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "8783792878a64402981a416989924348": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_cc70741031664fa89bfe8e8e672c5b2b",
- "placeholder": "",
- "style": "IPY_MODEL_46c8681bd36f419495d33b06c96311ed",
- "value": " 1/1 [00:00<00:00, 18.54ba/s]"
- }
- },
- "890ff54dc35e460b9108e2690966fafe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "8a669878b8354867944e577860910001": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "92c30a7c6102443cad2f6f03211c32e0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "92e295e353624110880cff6835b9e119": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a1419cc920324f62be58d6e48a82e275": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bc11f833cc9c441b9a58d69ea792fa9c",
- "placeholder": "",
- "style": "IPY_MODEL_4f81e460906a428f9f74a0aa469ba63f",
- "value": " 1/1 [00:00<00:00, 12.65ba/s]"
- }
- },
- "a5777207c788498fb4ac4900af91d7cf": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a5e2e1fe3ab94cc6ae1a73cc1ab6f9a8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a62ff1ee03dc47c9834b43720df991ea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6323e35581be4b338a904266a5e85005",
- "max": 3478,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6da7072e7f634a3aa2927fca1bcf38c0",
- "value": 3478
- }
- },
- "aa92ff120d9c4dd68ae941d7a1f33a81": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ad95ae421231492e814238bde2ecb551",
- "placeholder": "",
- "style": "IPY_MODEL_136f973d9623421eb38e09c73c6b6810",
- "value": " 1.53k/1.53k [00:00<00:00, 36.6kB/s]"
- }
- },
- "acc35dfdfca542828d1bb02cbde15dfe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6ae3b3139e6641fc9e62ae5744349add",
- "max": 1568,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_92c30a7c6102443cad2f6f03211c32e0",
- "value": 1568
- }
- },
- "ad95ae421231492e814238bde2ecb551": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "b9c5532ffabb44078de8a6f76a4b8be6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fe156fa95ee9410daff8f7c9a8b0d3a3",
- "placeholder": "",
- "style": "IPY_MODEL_a5e2e1fe3ab94cc6ae1a73cc1ab6f9a8",
- "value": " 1647/1647 [00:20<00:00, 89.86ex/s]"
- }
- },
- "bbfc45e0cf5644f6bc24118fa9c6c098": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "bc11f833cc9c441b9a58d69ea792fa9c": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "bdcf9380af5d4601b9b2de84b06ecb40": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bbfc45e0cf5644f6bc24118fa9c6c098",
- "max": 1647,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_eca458b185ae4570b1ec1e77389c871e",
- "value": 1647
- }
- },
- "c0919f3c8d594911815ce63273f7fe51": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "cc70741031664fa89bfe8e8e672c5b2b": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ce429683f48349c083e5fc3253a897d7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4246da00789f44e2abce952906bde6f1",
- "placeholder": "",
- "style": "IPY_MODEL_059588e34a88476eb6bbc1860ddc27ef",
- "value": "Downloading: 100%"
- }
- },
- "d3b5f5a0d35642e0b606ac63c38f88fa": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "db7a9c27eabb4ba391bfb9d819d7a36e": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "de1e5c31eacf4fa59cfa51926354acca": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "e575e46791b24f449b8afcb773e46dcc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "e78238c96d6a4152bf40f5d7a81e5495": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_75b26f4a95d24e9d8939d1f7b376eb51",
- "IPY_MODEL_f58af0561fc242238cfd0163f0ad5e5f",
- "IPY_MODEL_a1419cc920324f62be58d6e48a82e275"
- ],
- "layout": "IPY_MODEL_6ec3c80319fb45f3b6f7715049c9bce0"
- }
- },
- "e9531fcd48b74929bfdb45cd3f3315e7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "eca458b185ae4570b1ec1e77389c871e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "f28c64f34f9540b6b6bdc765c84e2307": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "f4af6a0756e241e49e5d325f1bdb18b4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_349c9e8b2a8846c1bff5a03d2a28066a",
- "placeholder": "",
- "style": "IPY_MODEL_de1e5c31eacf4fa59cfa51926354acca",
- "value": " 1.18G/1.18G [00:39<00:00, 35.4MB/s]"
- }
- },
- "f58af0561fc242238cfd0163f0ad5e5f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5cff6b2dd6944c59b8c2f205db5f49bf",
- "max": 1,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5ba2a38c71e64253a4fd39cf7d3b3326",
- "value": 1
- }
- },
- "f6e0ea791e5a44abb5d5891bb3e254ad": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f6e777f3a1684a7da3efc63281553b5e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_db7a9c27eabb4ba391bfb9d819d7a36e",
- "placeholder": "",
- "style": "IPY_MODEL_fd2ba2bf4b2946078a0761b773626b64",
- "value": "100%"
- }
- },
- "fd2ba2bf4b2946078a0761b773626b64": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "fe156fa95ee9410daff8f7c9a8b0d3a3": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ff8e746cf8ef4f988617b8d4c0dd3c9c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5cd8c74ba2e845d498afdc1c25009767",
- "max": 1947,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_3f0c587f7b764d96837c8e16254aab12",
- "value": 1947
- }
- },
- "5c84077c15e1487aac16e5d299623c83": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "VBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "VBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "VBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ea71802d1f3b4ca39bdfab30802c918e",
- "IPY_MODEL_d86cc42f14fb4393bc3aae3f9d4923f0",
- "IPY_MODEL_f0370df3e53544889c4641385b7fb86c",
- "IPY_MODEL_3187f55f790948848bf5a4372c14ff8f"
- ],
- "layout": "IPY_MODEL_c23e49f6f5924ca89a777a50c9081b2e"
- }
- },
- "06939459f4264a19a77b38ee3f41f2b1": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7822495df5c84db799a7b4769f2a7adf",
- "placeholder": "",
- "style": "IPY_MODEL_dd158d36b10b44aeb251e57b8d78fa02",
- "value": "
Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. "
- }
- },
- "2ada53e90d9d43b99bde17664e3e3add": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "PasswordModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "PasswordModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "PasswordView",
- "continuous_update": true,
- "description": "Token:",
- "description_tooltip": null,
- "disabled": false,
- "layout": "IPY_MODEL_833946328ca64ca6b1b205013c79be42",
- "placeholder": "",
- "style": "IPY_MODEL_2eee5ecfec194166ab0247c8c86e1da1",
- "value": ""
- }
- },
- "a9150506c6494e9e8cf8f9035d95de2a": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "CheckboxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "CheckboxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "CheckboxView",
- "description": "Add token as git credential?",
- "description_tooltip": null,
- "disabled": false,
- "indent": true,
- "layout": "IPY_MODEL_c83717e35b6c47dd977140e0764611e3",
- "style": "IPY_MODEL_097b30ead3914071b780860303ea6a9b",
- "value": true
- }
- },
- "2b6fc4d557274782aa469e488ce7fa2b": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ButtonModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ButtonModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ButtonView",
- "button_style": "",
- "description": "Login",
- "disabled": false,
- "icon": "",
- "layout": "IPY_MODEL_d56db9db1da0448faf87ba9d58974177",
- "style": "IPY_MODEL_d16958a35ccb4b95b03601bfb557da95",
- "tooltip": ""
- }
- },
- "6f63571f302b41649b6432825f8c463d": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ace27db68d964fbeafbf8dca0bae3088",
- "placeholder": "",
- "style": "IPY_MODEL_d29372b937394d48936d79c966cafbc7",
- "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.