zoltantensorfow
commited on
Commit
·
c5f0547
1
Parent(s):
062c731
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.23 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf8c3d2fad07bb00b0d8bb92431b0ee04dbddae9463d93fb9bcce2e4e566dbf9
|
3 |
+
size 108059
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbe7595e940>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fbe75963540>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 2000000,
|
23 |
+
"_total_timesteps": 2000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681795551151275652,
|
28 |
+
"learning_rate": 0.0001,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAI17GPgBd9rsmSgY/I17GPgBd9rsmSgY/I17GPgBd9rsmSgY/I17GPgBd9rsmSgY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1gvcPxdB0b+grI6/Jm2Xv11gtD/Os4O/MsofPifX1z/fH8I/p9Lqvh9LMT/B8AW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAjXsY+AF32uyZKBj/Nl0y7o9miugKLYTsjXsY+AF32uyZKBj/Nl0y7o9miugKLYTsjXsY+AF32uyZKBj/Nl0y7o9miugKLYTsjXsY+AF32uyZKBj/Nl0y7o9miugKLYTuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.38743696 -0.00751841 0.5245689 ]\n [ 0.38743696 -0.00751841 0.5245689 ]\n [ 0.38743696 -0.00751841 0.5245689 ]\n [ 0.38743696 -0.00751841 0.5245689 ]]",
|
38 |
+
"desired_goal": "[[ 1.7191112 -1.6347989 -1.1146431 ]\n [-1.1830184 1.4091908 -1.0289247 ]\n [ 0.15604475 1.6862534 1.5165976 ]\n [-0.4586384 0.6925525 -0.52320486]]",
|
39 |
+
"observation": "[[ 0.38743696 -0.00751841 0.5245689 -0.00312184 -0.00124245 0.00344151]\n [ 0.38743696 -0.00751841 0.5245689 -0.00312184 -0.00124245 0.00344151]\n [ 0.38743696 -0.00751841 0.5245689 -0.00312184 -0.00124245 0.00344151]\n [ 0.38743696 -0.00751841 0.5245689 -0.00312184 -0.00124245 0.00344151]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqRHXvSRss70NP2g9vqbtPWoi/r1GMfM9xZUPvRJ3lD3UlyU+ewL+PS17rrpqjf07lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.10501415 -0.08760861 0.05670075]\n [ 0.11604069 -0.12408908 0.11874633]\n [-0.03505494 0.07249273 0.16171199]\n [ 0.12402817 -0.00133119 0.00773781]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRRK9jGK52b+UhpRSlIwBbJRLMowBdJRHQLOqeMyad+Z1fZQoaAZoCWgPQwiazHhb6bXdv5SGlFKUaBVLMmgWR0CzqlqiO/+LdX2UKGgGaAloD0MI/yPTodPz17+UhpRSlGgVSzJoFkdAs6o8AMlTnHV9lChoBmgJaA9DCEil2NE41NC/lIaUUpRoFUsyaBZHQLOqHbzK9wp1fZQoaAZoCWgPQwisOqsF9pjZv5SGlFKUaBVLMmgWR0CzqwGHpKSQdX2UKGgGaAloD0MInBn9aDhlzr+UhpRSlGgVSzJoFkdAs6rjah6By3V9lChoBmgJaA9DCGJodXKG4tq/lIaUUpRoFUsyaBZHQLOqxMVDa5B1fZQoaAZoCWgPQwhwlpLlJJTVv5SGlFKUaBVLMmgWR0CzqqaPGQ0XdX2UKGgGaAloD0MI/N8RFaob4b+UhpRSlGgVSzJoFkdAs6uMSElE7XV9lChoBmgJaA9DCCC3Xz5ZMci/lIaUUpRoFUsyaBZHQLOrbjKxLTR1fZQoaAZoCWgPQwiuLTwvFRvJv5SGlFKUaBVLMmgWR0Czq0+W0JF9dX2UKGgGaAloD0MI9mBSfHxC1b+UhpRSlGgVSzJoFkdAs6sxZbILgHV9lChoBmgJaA9DCD5anDHMCdG/lIaUUpRoFUsyaBZHQLOsKZMtbs51fZQoaAZoCWgPQwgNN+Dzwwjdv5SGlFKUaBVLMmgWR0CzrAvA9FF2dX2UKGgGaAloD0MIy54ENufgy7+UhpRSlGgVSzJoFkdAs6vtKZlWfnV9lChoBmgJaA9DCLjoZKn1fse/lIaUUpRoFUsyaBZHQLOrzwPRRdh1fZQoaAZoCWgPQwgpIO1/gLXQv5SGlFKUaBVLMmgWR0CzrLd29tdidX2UKGgGaAloD0MIR7Bx/bs+3r+UhpRSlGgVSzJoFkdAs6yZX4j8k3V9lChoBmgJaA9DCJHRAUnYt+G/lIaUUpRoFUsyaBZHQLOsesniNsF1fZQoaAZoCWgPQwhM/5JUppjJv5SGlFKUaBVLMmgWR0CzrFydat9ydX2UKGgGaAloD0MIKGGm7V9Zzb+UhpRSlGgVSzJoFkdAs61D7BO58XV9lChoBmgJaA9DCDgsDfyoht6/lIaUUpRoFUsyaBZHQLOtJctoSL91fZQoaAZoCWgPQwjdzVMdcjPSv5SGlFKUaBVLMmgWR0CzrQcZpBX0dX2UKGgGaAloD0MIhnXj3ZGx0r+UhpRSlGgVSzJoFkdAs6zo7Rv3rXV9lChoBmgJaA9DCDoktVAyOdu/lIaUUpRoFUsyaBZHQLOt0AD7qIJ1fZQoaAZoCWgPQwhvufqxSX7Kv5SGlFKUaBVLMmgWR0CzrbHpB5X2dX2UKGgGaAloD0MI6Z51jZaD4b+UhpRSlGgVSzJoFkdAs62TTBqKxnV9lChoBmgJaA9DCJon1xTI7NW/lIaUUpRoFUsyaBZHQLOtdTHsC1Z1fZQoaAZoCWgPQwiESIYcW8/Zv5SGlFKUaBVLMmgWR0CzrmI5ksjFdX2UKGgGaAloD0MIBvUtc7os1b+UhpRSlGgVSzJoFkdAs65ELa24NXV9lChoBmgJaA9DCAOTG0XWGtO/lIaUUpRoFUsyaBZHQLOuJabnX/Z1fZQoaAZoCWgPQwhJFFrW/WPPv5SGlFKUaBVLMmgWR0Czrgd8JD3NdX2UKGgGaAloD0MIIvyLoDET5b+UhpRSlGgVSzJoFkdAs67vvsqrinV9lChoBmgJaA9DCPw2xHjNq9G/lIaUUpRoFUsyaBZHQLOu0agVXV91fZQoaAZoCWgPQwilMsUcBB3Pv5SGlFKUaBVLMmgWR0CzrrMPWhAXdX2UKGgGaAloD0MI5PVgUnx807+UhpRSlGgVSzJoFkdAs66U1O0sv3V9lChoBmgJaA9DCEyKj0/IztG/lIaUUpRoFUsyaBZHQLOvfpN9H+Z1fZQoaAZoCWgPQwid1m1Q+63Rv5SGlFKUaBVLMmgWR0Czr2B8MNMHdX2UKGgGaAloD0MIH0q05PG0zL+UhpRSlGgVSzJoFkdAs69B50KZ2XV9lChoBmgJaA9DCCTQYFPnUdi/lIaUUpRoFUsyaBZHQLOvI7hvR7Z1fZQoaAZoCWgPQwgyqgzjbpDgv5SGlFKUaBVLMmgWR0CzsAo2jwhGdX2UKGgGaAloD0MIDJBoAkUs1L+UhpRSlGgVSzJoFkdAs6/sEpy6tnV9lChoBmgJaA9DCDiGAODYs9K/lIaUUpRoFUsyaBZHQLOvzWSEDhd1fZQoaAZoCWgPQwgro5HPK57Zv5SGlFKUaBVLMmgWR0Czr68cdYGMdX2UKGgGaAloD0MI6IL6ljld0L+UhpRSlGgVSzJoFkdAs7CR87ZFonV9lChoBmgJaA9DCCUEq+rld9m/lIaUUpRoFUsyaBZHQLOwc9P1tfp1fZQoaAZoCWgPQwhsJXSXxNnhv5SGlFKUaBVLMmgWR0CzsFU0FbFCdX2UKGgGaAloD0MIURGnk2x12b+UhpRSlGgVSzJoFkdAs7A3ASFoMHV9lChoBmgJaA9DCIoBEk2giNK/lIaUUpRoFUsyaBZHQLOxGmPHT7V1fZQoaAZoCWgPQwiHFtnO91PXv5SGlFKUaBVLMmgWR0CzsPxFuvU0dX2UKGgGaAloD0MIKEaWzLG827+UhpRSlGgVSzJoFkdAs7Ddrl/6PHV9lChoBmgJaA9DCDz4iQPo98m/lIaUUpRoFUsyaBZHQLOwv4Ju2ql1fZQoaAZoCWgPQwgAAWvVroniv5SGlFKUaBVLMmgWR0CzsadYr8R+dX2UKGgGaAloD0MIu0IfLGND1r+UhpRSlGgVSzJoFkdAs7GJOi35OHV9lChoBmgJaA9DCOo9ldOektC/lIaUUpRoFUsyaBZHQLOxapnYg7p1fZQoaAZoCWgPQwi+ZrlsdM7cv5SGlFKUaBVLMmgWR0CzsUykXUH6dX2UKGgGaAloD0MIYr1RK0zf2b+UhpRSlGgVSzJoFkdAs7Ivg62fCnV9lChoBmgJaA9DCFwdAHFXr8i/lIaUUpRoFUsyaBZHQLOyEV4oqkN1fZQoaAZoCWgPQwjhfOpYpfTTv5SGlFKUaBVLMmgWR0CzsfKyOaOQdX2UKGgGaAloD0MIAoI5evze3b+UhpRSlGgVSzJoFkdAs7HUhkiD/XV9lChoBmgJaA9DCNcYdELooNu/lIaUUpRoFUsyaBZHQLOyteWv8qF1fZQoaAZoCWgPQwj0wMdgxanfv5SGlFKUaBVLMmgWR0CzspfDgqEwdX2UKGgGaAloD0MI6L8Hr13a2b+UhpRSlGgVSzJoFkdAs7J5GQSzxHV9lChoBmgJaA9DCBNGs7J9yNa/lIaUUpRoFUsyaBZHQLOyWtYjjaR1fZQoaAZoCWgPQwi3mQrxSLzdv5SGlFKUaBVLMmgWR0Czs1JU5uIidX2UKGgGaAloD0MIdGIP7WMFyb+UhpRSlGgVSzJoFkdAs7M0Oz6acHV9lChoBmgJaA9DCEuRfCWQEti/lIaUUpRoFUsyaBZHQLOzFZ7Xxvx1fZQoaAZoCWgPQwgZAKq4cYvTv5SGlFKUaBVLMmgWR0CzsvdgSeyzdX2UKGgGaAloD0MIQlw5e2e037+UhpRSlGgVSzJoFkdAs7Ph7IDHO3V9lChoBmgJaA9DCN1dZ0P+mdC/lIaUUpRoFUsyaBZHQLOzw9qUNa11fZQoaAZoCWgPQwi0Hr5MFCHfv5SGlFKUaBVLMmgWR0Czs6VBD5TIdX2UKGgGaAloD0MILzTXaaSl1L+UhpRSlGgVSzJoFkdAs7OHD0lJH3V9lChoBmgJaA9DCKezk8FR8t6/lIaUUpRoFUsyaBZHQLO0cA80UGp1fZQoaAZoCWgPQwjuI7cm3Zbgv5SGlFKUaBVLMmgWR0CztFIBmwqzdX2UKGgGaAloD0MIBfuvc9Nm0b+UhpRSlGgVSzJoFkdAs7QzaQFLWnV9lChoBmgJaA9DCMzR4/c2feC/lIaUUpRoFUsyaBZHQLO0FTmGM4t1fZQoaAZoCWgPQwg34PPDCOHTv5SGlFKUaBVLMmgWR0CztQv6O5rhdX2UKGgGaAloD0MI9mBSfHxC3r+UhpRSlGgVSzJoFkdAs7Tt8Sf16HV9lChoBmgJaA9DCAGHUKVmD9m/lIaUUpRoFUsyaBZHQLO0z2KVII51fZQoaAZoCWgPQwhWDi2yne/Hv5SGlFKUaBVLMmgWR0CztLE6tDD1dX2UKGgGaAloD0MI/Urnw7ME3b+UhpRSlGgVSzJoFkdAs7WZOEdvKnV9lChoBmgJaA9DCDqt26D2W9y/lIaUUpRoFUsyaBZHQLO1ey8zyjJ1fZQoaAZoCWgPQwjfap24HK/Zv5SGlFKUaBVLMmgWR0CztVyQT238dX2UKGgGaAloD0MIceSByCJN1r+UhpRSlGgVSzJoFkdAs7U+Wom5UnV9lChoBmgJaA9DCBIVqpuLv9S/lIaUUpRoFUsyaBZHQLO2K2Bas6t1fZQoaAZoCWgPQwhGe7yQDg/Fv5SGlFKUaBVLMmgWR0Cztg1DF6zFdX2UKGgGaAloD0MI8N+8OPHV07+UhpRSlGgVSzJoFkdAs7XuqZML4XV9lChoBmgJaA9DCH1e8dQjDdy/lIaUUpRoFUsyaBZHQLO10HY6GQF1fZQoaAZoCWgPQwjGGFjH8UPPv5SGlFKUaBVLMmgWR0CztrVuejEfdX2UKGgGaAloD0MIwoh9AihG1L+UhpRSlGgVSzJoFkdAs7aXXsgMdHV9lChoBmgJaA9DCGO0jqomiNi/lIaUUpRoFUsyaBZHQLO2eL/0dzZ1fZQoaAZoCWgPQwjBH37+e/DXv5SGlFKUaBVLMmgWR0CztlqTbFjvdX2UKGgGaAloD0MIio7k8h/S2r+UhpRSlGgVSzJoFkdAs7dCHYYixHV9lChoBmgJaA9DCAbUm1HzVd+/lIaUUpRoFUsyaBZHQLO3JA6+36R1fZQoaAZoCWgPQwix4emVsgzSv5SGlFKUaBVLMmgWR0CztwVvQ4S6dX2UKGgGaAloD0MIvajdrwJ817+UhpRSlGgVSzJoFkdAs7bnOD8Lr3V9lChoBmgJaA9DCFzII7iRstm/lIaUUpRoFUsyaBZHQLO3zHDrJKd1fZQoaAZoCWgPQwimDvJ6MCnXv5SGlFKUaBVLMmgWR0Czt651zQu3dX2UKGgGaAloD0MIigCnd/F+yL+UhpRSlGgVSzJoFkdAs7eP13+uNnV9lChoBmgJaA9DCEc+r3jqkdW/lIaUUpRoFUsyaBZHQLO3cZuhsZZ1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 100000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee552f9dae10958ab8d431d72ba19a1dc7721667a17a01086d7446a35346ba8f
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48ed5d4746a37104d207074075d920aaac171632a6516f7ccf616680837549eb
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbe7595e940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbe75963540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681795551151275652, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAI17GPgBd9rsmSgY/I17GPgBd9rsmSgY/I17GPgBd9rsmSgY/I17GPgBd9rsmSgY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1gvcPxdB0b+grI6/Jm2Xv11gtD/Os4O/MsofPifX1z/fH8I/p9Lqvh9LMT/B8AW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAjXsY+AF32uyZKBj/Nl0y7o9miugKLYTsjXsY+AF32uyZKBj/Nl0y7o9miugKLYTsjXsY+AF32uyZKBj/Nl0y7o9miugKLYTsjXsY+AF32uyZKBj/Nl0y7o9miugKLYTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38743696 -0.00751841 0.5245689 ]\n [ 0.38743696 -0.00751841 0.5245689 ]\n [ 0.38743696 -0.00751841 0.5245689 ]\n [ 0.38743696 -0.00751841 0.5245689 ]]", "desired_goal": "[[ 1.7191112 -1.6347989 -1.1146431 ]\n [-1.1830184 1.4091908 -1.0289247 ]\n [ 0.15604475 1.6862534 1.5165976 ]\n [-0.4586384 0.6925525 -0.52320486]]", "observation": "[[ 0.38743696 -0.00751841 0.5245689 -0.00312184 -0.00124245 0.00344151]\n [ 0.38743696 -0.00751841 0.5245689 -0.00312184 -0.00124245 0.00344151]\n [ 0.38743696 -0.00751841 0.5245689 -0.00312184 -0.00124245 0.00344151]\n [ 0.38743696 -0.00751841 0.5245689 -0.00312184 -0.00124245 0.00344151]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqRHXvSRss70NP2g9vqbtPWoi/r1GMfM9xZUPvRJ3lD3UlyU+ewL+PS17rrpqjf07lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10501415 -0.08760861 0.05670075]\n [ 0.11604069 -0.12408908 0.11874633]\n [-0.03505494 0.07249273 0.16171199]\n [ 0.12402817 -0.00133119 0.00773781]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRRK9jGK52b+UhpRSlIwBbJRLMowBdJRHQLOqeMyad+Z1fZQoaAZoCWgPQwiazHhb6bXdv5SGlFKUaBVLMmgWR0CzqlqiO/+LdX2UKGgGaAloD0MI/yPTodPz17+UhpRSlGgVSzJoFkdAs6o8AMlTnHV9lChoBmgJaA9DCEil2NE41NC/lIaUUpRoFUsyaBZHQLOqHbzK9wp1fZQoaAZoCWgPQwisOqsF9pjZv5SGlFKUaBVLMmgWR0CzqwGHpKSQdX2UKGgGaAloD0MInBn9aDhlzr+UhpRSlGgVSzJoFkdAs6rjah6By3V9lChoBmgJaA9DCGJodXKG4tq/lIaUUpRoFUsyaBZHQLOqxMVDa5B1fZQoaAZoCWgPQwhwlpLlJJTVv5SGlFKUaBVLMmgWR0CzqqaPGQ0XdX2UKGgGaAloD0MI/N8RFaob4b+UhpRSlGgVSzJoFkdAs6uMSElE7XV9lChoBmgJaA9DCCC3Xz5ZMci/lIaUUpRoFUsyaBZHQLOrbjKxLTR1fZQoaAZoCWgPQwiuLTwvFRvJv5SGlFKUaBVLMmgWR0Czq0+W0JF9dX2UKGgGaAloD0MI9mBSfHxC1b+UhpRSlGgVSzJoFkdAs6sxZbILgHV9lChoBmgJaA9DCD5anDHMCdG/lIaUUpRoFUsyaBZHQLOsKZMtbs51fZQoaAZoCWgPQwgNN+Dzwwjdv5SGlFKUaBVLMmgWR0CzrAvA9FF2dX2UKGgGaAloD0MIy54ENufgy7+UhpRSlGgVSzJoFkdAs6vtKZlWfnV9lChoBmgJaA9DCLjoZKn1fse/lIaUUpRoFUsyaBZHQLOrzwPRRdh1fZQoaAZoCWgPQwgpIO1/gLXQv5SGlFKUaBVLMmgWR0CzrLd29tdidX2UKGgGaAloD0MIR7Bx/bs+3r+UhpRSlGgVSzJoFkdAs6yZX4j8k3V9lChoBmgJaA9DCJHRAUnYt+G/lIaUUpRoFUsyaBZHQLOsesniNsF1fZQoaAZoCWgPQwhM/5JUppjJv5SGlFKUaBVLMmgWR0CzrFydat9ydX2UKGgGaAloD0MIKGGm7V9Zzb+UhpRSlGgVSzJoFkdAs61D7BO58XV9lChoBmgJaA9DCDgsDfyoht6/lIaUUpRoFUsyaBZHQLOtJctoSL91fZQoaAZoCWgPQwjdzVMdcjPSv5SGlFKUaBVLMmgWR0CzrQcZpBX0dX2UKGgGaAloD0MIhnXj3ZGx0r+UhpRSlGgVSzJoFkdAs6zo7Rv3rXV9lChoBmgJaA9DCDoktVAyOdu/lIaUUpRoFUsyaBZHQLOt0AD7qIJ1fZQoaAZoCWgPQwhvufqxSX7Kv5SGlFKUaBVLMmgWR0CzrbHpB5X2dX2UKGgGaAloD0MI6Z51jZaD4b+UhpRSlGgVSzJoFkdAs62TTBqKxnV9lChoBmgJaA9DCJon1xTI7NW/lIaUUpRoFUsyaBZHQLOtdTHsC1Z1fZQoaAZoCWgPQwiESIYcW8/Zv5SGlFKUaBVLMmgWR0CzrmI5ksjFdX2UKGgGaAloD0MIBvUtc7os1b+UhpRSlGgVSzJoFkdAs65ELa24NXV9lChoBmgJaA9DCAOTG0XWGtO/lIaUUpRoFUsyaBZHQLOuJabnX/Z1fZQoaAZoCWgPQwhJFFrW/WPPv5SGlFKUaBVLMmgWR0Czrgd8JD3NdX2UKGgGaAloD0MIIvyLoDET5b+UhpRSlGgVSzJoFkdAs67vvsqrinV9lChoBmgJaA9DCPw2xHjNq9G/lIaUUpRoFUsyaBZHQLOu0agVXV91fZQoaAZoCWgPQwilMsUcBB3Pv5SGlFKUaBVLMmgWR0CzrrMPWhAXdX2UKGgGaAloD0MI5PVgUnx807+UhpRSlGgVSzJoFkdAs66U1O0sv3V9lChoBmgJaA9DCEyKj0/IztG/lIaUUpRoFUsyaBZHQLOvfpN9H+Z1fZQoaAZoCWgPQwid1m1Q+63Rv5SGlFKUaBVLMmgWR0Czr2B8MNMHdX2UKGgGaAloD0MIH0q05PG0zL+UhpRSlGgVSzJoFkdAs69B50KZ2XV9lChoBmgJaA9DCCTQYFPnUdi/lIaUUpRoFUsyaBZHQLOvI7hvR7Z1fZQoaAZoCWgPQwgyqgzjbpDgv5SGlFKUaBVLMmgWR0CzsAo2jwhGdX2UKGgGaAloD0MIDJBoAkUs1L+UhpRSlGgVSzJoFkdAs6/sEpy6tnV9lChoBmgJaA9DCDiGAODYs9K/lIaUUpRoFUsyaBZHQLOvzWSEDhd1fZQoaAZoCWgPQwgro5HPK57Zv5SGlFKUaBVLMmgWR0Czr68cdYGMdX2UKGgGaAloD0MI6IL6ljld0L+UhpRSlGgVSzJoFkdAs7CR87ZFonV9lChoBmgJaA9DCCUEq+rld9m/lIaUUpRoFUsyaBZHQLOwc9P1tfp1fZQoaAZoCWgPQwhsJXSXxNnhv5SGlFKUaBVLMmgWR0CzsFU0FbFCdX2UKGgGaAloD0MIURGnk2x12b+UhpRSlGgVSzJoFkdAs7A3ASFoMHV9lChoBmgJaA9DCIoBEk2giNK/lIaUUpRoFUsyaBZHQLOxGmPHT7V1fZQoaAZoCWgPQwiHFtnO91PXv5SGlFKUaBVLMmgWR0CzsPxFuvU0dX2UKGgGaAloD0MIKEaWzLG827+UhpRSlGgVSzJoFkdAs7Ddrl/6PHV9lChoBmgJaA9DCDz4iQPo98m/lIaUUpRoFUsyaBZHQLOwv4Ju2ql1fZQoaAZoCWgPQwgAAWvVroniv5SGlFKUaBVLMmgWR0CzsadYr8R+dX2UKGgGaAloD0MIu0IfLGND1r+UhpRSlGgVSzJoFkdAs7GJOi35OHV9lChoBmgJaA9DCOo9ldOektC/lIaUUpRoFUsyaBZHQLOxapnYg7p1fZQoaAZoCWgPQwi+ZrlsdM7cv5SGlFKUaBVLMmgWR0CzsUykXUH6dX2UKGgGaAloD0MIYr1RK0zf2b+UhpRSlGgVSzJoFkdAs7Ivg62fCnV9lChoBmgJaA9DCFwdAHFXr8i/lIaUUpRoFUsyaBZHQLOyEV4oqkN1fZQoaAZoCWgPQwjhfOpYpfTTv5SGlFKUaBVLMmgWR0CzsfKyOaOQdX2UKGgGaAloD0MIAoI5evze3b+UhpRSlGgVSzJoFkdAs7HUhkiD/XV9lChoBmgJaA9DCNcYdELooNu/lIaUUpRoFUsyaBZHQLOyteWv8qF1fZQoaAZoCWgPQwj0wMdgxanfv5SGlFKUaBVLMmgWR0CzspfDgqEwdX2UKGgGaAloD0MI6L8Hr13a2b+UhpRSlGgVSzJoFkdAs7J5GQSzxHV9lChoBmgJaA9DCBNGs7J9yNa/lIaUUpRoFUsyaBZHQLOyWtYjjaR1fZQoaAZoCWgPQwi3mQrxSLzdv5SGlFKUaBVLMmgWR0Czs1JU5uIidX2UKGgGaAloD0MIdGIP7WMFyb+UhpRSlGgVSzJoFkdAs7M0Oz6acHV9lChoBmgJaA9DCEuRfCWQEti/lIaUUpRoFUsyaBZHQLOzFZ7Xxvx1fZQoaAZoCWgPQwgZAKq4cYvTv5SGlFKUaBVLMmgWR0CzsvdgSeyzdX2UKGgGaAloD0MIQlw5e2e037+UhpRSlGgVSzJoFkdAs7Ph7IDHO3V9lChoBmgJaA9DCN1dZ0P+mdC/lIaUUpRoFUsyaBZHQLOzw9qUNa11fZQoaAZoCWgPQwi0Hr5MFCHfv5SGlFKUaBVLMmgWR0Czs6VBD5TIdX2UKGgGaAloD0MILzTXaaSl1L+UhpRSlGgVSzJoFkdAs7OHD0lJH3V9lChoBmgJaA9DCKezk8FR8t6/lIaUUpRoFUsyaBZHQLO0cA80UGp1fZQoaAZoCWgPQwjuI7cm3Zbgv5SGlFKUaBVLMmgWR0CztFIBmwqzdX2UKGgGaAloD0MIBfuvc9Nm0b+UhpRSlGgVSzJoFkdAs7QzaQFLWnV9lChoBmgJaA9DCMzR4/c2feC/lIaUUpRoFUsyaBZHQLO0FTmGM4t1fZQoaAZoCWgPQwg34PPDCOHTv5SGlFKUaBVLMmgWR0CztQv6O5rhdX2UKGgGaAloD0MI9mBSfHxC3r+UhpRSlGgVSzJoFkdAs7Tt8Sf16HV9lChoBmgJaA9DCAGHUKVmD9m/lIaUUpRoFUsyaBZHQLO0z2KVII51fZQoaAZoCWgPQwhWDi2yne/Hv5SGlFKUaBVLMmgWR0CztLE6tDD1dX2UKGgGaAloD0MI/Urnw7ME3b+UhpRSlGgVSzJoFkdAs7WZOEdvKnV9lChoBmgJaA9DCDqt26D2W9y/lIaUUpRoFUsyaBZHQLO1ey8zyjJ1fZQoaAZoCWgPQwjfap24HK/Zv5SGlFKUaBVLMmgWR0CztVyQT238dX2UKGgGaAloD0MIceSByCJN1r+UhpRSlGgVSzJoFkdAs7U+Wom5UnV9lChoBmgJaA9DCBIVqpuLv9S/lIaUUpRoFUsyaBZHQLO2K2Bas6t1fZQoaAZoCWgPQwhGe7yQDg/Fv5SGlFKUaBVLMmgWR0Cztg1DF6zFdX2UKGgGaAloD0MI8N+8OPHV07+UhpRSlGgVSzJoFkdAs7XuqZML4XV9lChoBmgJaA9DCH1e8dQjDdy/lIaUUpRoFUsyaBZHQLO10HY6GQF1fZQoaAZoCWgPQwjGGFjH8UPPv5SGlFKUaBVLMmgWR0CztrVuejEfdX2UKGgGaAloD0MIwoh9AihG1L+UhpRSlGgVSzJoFkdAs7aXXsgMdHV9lChoBmgJaA9DCGO0jqomiNi/lIaUUpRoFUsyaBZHQLO2eL/0dzZ1fZQoaAZoCWgPQwjBH37+e/DXv5SGlFKUaBVLMmgWR0CztlqTbFjvdX2UKGgGaAloD0MIio7k8h/S2r+UhpRSlGgVSzJoFkdAs7dCHYYixHV9lChoBmgJaA9DCAbUm1HzVd+/lIaUUpRoFUsyaBZHQLO3JA6+36R1fZQoaAZoCWgPQwix4emVsgzSv5SGlFKUaBVLMmgWR0CztwVvQ4S6dX2UKGgGaAloD0MIvajdrwJ817+UhpRSlGgVSzJoFkdAs7bnOD8Lr3V9lChoBmgJaA9DCFzII7iRstm/lIaUUpRoFUsyaBZHQLO3zHDrJKd1fZQoaAZoCWgPQwimDvJ6MCnXv5SGlFKUaBVLMmgWR0Czt651zQu3dX2UKGgGaAloD0MIigCnd/F+yL+UhpRSlGgVSzJoFkdAs7eP13+uNnV9lChoBmgJaA9DCEc+r3jqkdW/lIaUUpRoFUsyaBZHQLO3cZuhsZZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (256 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.23233969452267048, "std_reward": 0.08707798299468941, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-18T06:50:02.374741"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f37c32b41d7ed06e31e8f724f700f6195881e9a43e26793fcdda2c09f2187d9
|
3 |
+
size 2381
|