Upload PPO LunarLander-v2-local trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 255.21 +/- 14.61
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0e56d2e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe0e56d2ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0e56d2f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe0e56d3010>", "_build": "<function ActorCriticPolicy._build at 0x7fe0e56d30a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe0e56d3130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe0e56d31c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe0e56d3250>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe0e56d32e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe0e56d3370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0e56d3400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe0e56d3490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe0e56dc980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709880740198324209, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1sCD64uJk/jUPfPk8RKL/hBwc+YoYWPgAAAAAAAAAAcz+Xvfxzxz51zxg+qhTevqlI/Txd0vo9AAAAAAAAAADANrm9aJTxPba35D1To6K+2OyhvNb5pj0AAAAAAAAAAEAiHr5Y76Q+NvkmPrl3n76dJCw9wrXgvQAAAAAAAAAA0wYmvrUPgj8FI9W+zkr3vtz8jr7sQR++AAAAAAAAAADaMxO+pAFqu17uE7uR+ji40V+KPKJyMDoAAIA/AACAP8Behz2PDgi67PaZuDObJDF+72C7MjC1NwAAgD8AAIA/moKUvLk0jj/uIQ+9LTv2vptgYL311uA9AAAAAAAAAACmkf69P3xRPq0wsj3qFo++xVuUPNOMFLoAAAAAAAAAAAbWJL6YZ1I/O2MpPYLQ9r7bQbm9glQ3PgAAAAAAAAAAAB5RPbiesLe79JA6HogSvvvu+jn6bF6/AAAAAAAAgD9e956+1BhZP15Glr7t3uu+WxQKvzb3tb0AAAAAAAAAAJojBDym/LQ/pqG+Pd+T+L2CtPe8uLH7vQAAAAAAAAAAmv18PY9iWbodnDyzQs/lryDNAjspUb0zAACAPwAAgD/mLio99tx9umVlQznaMi00SC9xuqs1ZLgAAIA/AACAP934kT4N7ly9u7NvO9evY7q1VMC+HdGvugAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/gEqUeMhqMAWyUTQABjAF0lEdAlRPSFfzBh3V9lChoBkdAc5JXbdrO7mgHS/hoCEdAlRQ2OAAhjnV9lChoBkdAcfvSRKYiPmgHTQMBaAhHQJUUWcMEzO51fZQoaAZHQG1mHN5dGAloB00VAWgIR0CVFYfCAMDwdX2UKGgGR0BxzeDpTuOTaAdNNwFoCEdAlRYqHoHLR3V9lChoBkdAclMry1/lQ2gHTagBaAhHQJUXtJrcj7h1fZQoaAZHQDXyy3Td+G5oB0uvaAhHQJUXvjFQ2uR1fZQoaAZHQG3yveYUnG9oB00FAWgIR0CVGC7HQyAQdX2UKGgGR0Byc49Net0WaAdL4mgIR0CVGZlKsdT6dX2UKGgGR0Bw6UYAKfFraAdL+2gIR0CVGaRG+bmVdX2UKGgGR0BwQWTzND+jaAdNNQFoCEdAlR1etbLU1HV9lChoBkdAbXIgTyrgfmgHTSABaAhHQJUetwfhddF1fZQoaAZHQHGAxVQyhzxoB0v9aAhHQJUgXoOhCdB1fZQoaAZHQHD9JJPIn0FoB00SAWgIR0CVIG4rSVnmdX2UKGgGR0BwTHfcer+6aAdNCAFoCEdAlSDXCbc453V9lChoBkdAcNXe54GD+WgHTTIBaAhHQJUixC2MKkV1fZQoaAZHQHGHCBTXJ5poB00OAWgIR0CVIz1VYISldX2UKGgGR0ByMOZOSGJvaAdNAQFoCEdAlSNe3Ytg8nV9lChoBkdAcQfGzKLbYmgHTVABaAhHQJUkccrAgxJ1fZQoaAZHQHDaOHerMkhoB02BAWgIR0CVJOuOS4e+dX2UKGgGR0Bul/qRlpXZaAdNEAFoCEdAlSYuyu6mO3V9lChoBkdAcE+j94u9OGgHS/NoCEdAlScmLgn+h3V9lChoBkdAcFnAG0NSZWgHTQcBaAhHQJUoOQvHtF91fZQoaAZHQG7bkpiI+GJoB00uAWgIR0CVKFWPtD2KdX2UKGgGR0Bxgx+/gzguaAdNaQFoCEdAlSq2WhRIjHV9lChoBkdAcSx3BHkLhWgHS/hoCEdAlSxKjSG8EnV9lChoBkdAcVYPFNtZWGgHS95oCEdAlSxaP0Zm7XV9lChoBkdAcLCbqQiiZmgHS+5oCEdAlS0kWdmQKnV9lChoBkdAcxXgtOEdvWgHS/NoCEdAlS3HwLE1mHV9lChoBkdAbhz67/XGwWgHS95oCEdAlS7Va0QbuXV9lChoBkdAcdkxREWqLmgHTUMBaAhHQJUvE1ZTyax1fZQoaAZHQHNulXzUZvVoB00IAWgIR0CVMG2rXDm9dX2UKGgGR0BtLkJOWSlnaAdL6mgIR0CVMH/7iyY5dX2UKGgGR0BvR3qmj0tiaAdL9mgIR0CVMtTfzjFRdX2UKGgGR0BwyOamXPZ7aAdL52gIR0CVMw3YL9dedX2UKGgGR0BycuW5Yoy9aAdNPgFoCEdAlTOzguRLb3V9lChoBkdAcLjvUSZjQWgHS+1oCEdAlTR29pRGdHV9lChoBkdAciD+bmU4aWgHTQABaAhHQJU1mcLBsRB1fZQoaAZHQCJLSPU8V59oB0u7aAhHQJU2ETmGM4t1fZQoaAZHQHFBnW4EwFloB01PAWgIR0CVNkn0Cih4dX2UKGgGRz+zq7iADq4ZaAdLwGgIR0CVNkkdmxt6dX2UKGgGR0Bu0dYlpoK2aAdL4WgIR0CVNncsDnvEdX2UKGgGR0Bw/RGrjo6kaAdL+2gIR0CVWHcxj8UFdX2UKGgGR0BZCvAj6eoUaAdN6ANoCEdAlViguVX3g3V9lChoBkdAcY2U8FINE2gHTQYBaAhHQJVZphqj8DV1fZQoaAZHQHEqrnHNorZoB0v2aAhHQJVaGzQeFL51fZQoaAZHQEUjA8jiXIFoB0uxaAhHQJVdW+bmU4d1fZQoaAZHQHBohky1uzhoB0vfaAhHQJVeUDIRywR1fZQoaAZHQEOZsHB1s+FoB0u5aAhHQJVeUMz/IbR1fZQoaAZHQHBKXZPEbYNoB00DAWgIR0CVXtYplSTAdX2UKGgGR0BvuokE9t/GaAdNCQFoCEdAlV7x4+r2g3V9lChoBkdATB4oVmBe5WgHS8loCEdAlV8Dslb/wXV9lChoBkdAbirQ6ZH/cWgHS+5oCEdAlWDvX05EMXV9lChoBkdAcl+Q66reZWgHTSUBaAhHQJVhR5kbxVh1fZQoaAZHQHD3s63iJfpoB00dAWgIR0CVYr09hZyNdX2UKGgGR0BwM9BhQWN4aAdL8WgIR0CVZSKVII4VdX2UKGgGR0BwnvtBv73xaAdL5WgIR0CVZcml67d0dX2UKGgGR0ByYm22G7BgaAdNBwFoCEdAlWZ/+n62v3V9lChoBkdAbve9h7Vrh2gHS99oCEdAlWp4sEq2B3V9lChoBkdAbg1LUTcqOWgHS+JoCEdAlWqoPkJa7nV9lChoBkdAckuGkN4JNWgHTTgBaAhHQJVq9YwIt191fZQoaAZHQHDa/BzmwJRoB0vkaAhHQJVrel3yI551fZQoaAZHQGz9B06o2n9oB00FAWgIR0CVa7zxgAp8dX2UKGgGR0BxA998Z1mraAdL/2gIR0CVbMr0J4SpdX2UKGgGR0Bwo4NG3F1kaAdNAAFoCEdAlWzzzmOlwnV9lChoBkdAb/wp7TlT32gHS99oCEdAlW2H/T9bYHV9lChoBkdAZ3UTRplBhWgHTVYCaAhHQJVunMINVip1fZQoaAZHQHC5UKZ2IO9oB0vZaAhHQJVupnHvMKV1fZQoaAZHQHEL+9vjwQVoB00oAWgIR0CVcPYISlFddX2UKGgGR0BvVUZYPoV3aAdL5WgIR0CVcirvsqrjdX2UKGgGR0BxVPp7kXDWaAdL/mgIR0CVctrwe/5+dX2UKGgGR0BHgviT+vQoaAdLqmgIR0CVc33Jgb6ydX2UKGgGR0Bwf7yQPqcFaAdL8mgIR0CVc41G9YfXdX2UKGgGR0ByYDUiILw4aAdL12gIR0CVdc8UmD15dX2UKGgGR0Bw7/iqABkqaAdL42gIR0CVd29OymhudX2UKGgGR0BtbF74SHuaaAdL+WgIR0CVd+IS13MZdX2UKGgGR0Bw4aKMvRJFaAdL8WgIR0CVeS8DSw4bdX2UKGgGR0BxejI8yN4raAdNEQFoCEdAlXmhw++ueXV9lChoBkdAIlPDpC8e0WgHS7xoCEdAlXqoraufVnV9lChoBkdAciqgKWszVWgHS/NoCEdAlXsjzZpSJnV9lChoBkdAcjMBKcurZWgHTQMBaAhHQJV8B2FFlTZ1fZQoaAZHQGp2XM6ij+JoB02sA2gIR0CVfso99tuUdX2UKGgGR0Bwcg+3Ytg8aAdNZgFoCEdAlX+83qAz6HV9lChoBkdAcariwjdHlWgHS+poCEdAlX/nb212JXV9lChoBkdAcNUoh6jWTWgHS+1oCEdAlYACbQTmGXV9lChoBkdAb1B8VpKzzGgHS/poCEdAlYAS+L3sX3V9lChoBkdAcas8cdYGMWgHS95oCEdAlYGD987ZF3V9lChoBkdAcTAWGh24eGgHTToBaAhHQJWCay1NQCV1fZQoaAZHQGFhdCNS619oB03oA2gIR0CVgz2R7qptdX2UKGgGR0BykO5J9RaYaAdNtwFoCEdAlYQFCLMs6XV9lChoBkdAcTjpSJj2BmgHS99oCEdAlYTje9Ba93V9lChoBkdAcoW/UvwmV2gHS/ZoCEdAlYWTE3sHB3V9lChoBkdAcCzpvxYq5WgHTRYBaAhHQJWF68Hv+fh1fZQoaAZHQG1PiuMdcSpoB0vwaAhHQJWHBqgyuZF1fZQoaAZHQG8mc9GI9DBoB00cAWgIR0CViLCmuTzNdX2UKGgGR0A4J6gM+eOGaAdLrWgIR0CViZ6iCaqkdX2UKGgGR0Bw88QumJm/aAdL3WgIR0CVinFOfukUdX2UKGgGR0BwhgQbuMMraAdL5GgIR0CViqReTmnwdX2UKGgGR0BxgoWN3np0aAdL/GgIR0CVitsMAmzCdX2UKGgGR0ByWSkLx7RfaAdNPgFoCEdAlYud6PbO/3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2RhbmZvdWVyLy5jb25kYS9lbnZzL0NvbGFiRW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUvZGFuZm91ZXIvLmNvbmRhL2VudnMvQ29sYWJFbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2RhbmZvdWVyLy5jb25kYS9lbnZzL0NvbGFiRW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUvZGFuZm91ZXIvLmNvbmRhL2VudnMvQ29sYWJFbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.0-97-generic-x86_64-with-glibc2.31 # 107~20.04.1-Ubuntu SMP Fri Feb 9 14:20:11 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.2", "GPU Enabled": "True", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56a4b67342e11a92bcf79cb2777c2081af35b32c988a03b31169ac697a0add42
|
3 |
+
size 148055
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0e56d2e60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe0e56d2ef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0e56d2f80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe0e56d3010>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe0e56d30a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe0e56d3130>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe0e56d31c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe0e56d3250>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe0e56d32e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe0e56d3370>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0e56d3400>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe0e56d3490>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe0e56dc980>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1709880740198324209,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1sCD64uJk/jUPfPk8RKL/hBwc+YoYWPgAAAAAAAAAAcz+Xvfxzxz51zxg+qhTevqlI/Txd0vo9AAAAAAAAAADANrm9aJTxPba35D1To6K+2OyhvNb5pj0AAAAAAAAAAEAiHr5Y76Q+NvkmPrl3n76dJCw9wrXgvQAAAAAAAAAA0wYmvrUPgj8FI9W+zkr3vtz8jr7sQR++AAAAAAAAAADaMxO+pAFqu17uE7uR+ji40V+KPKJyMDoAAIA/AACAP8Behz2PDgi67PaZuDObJDF+72C7MjC1NwAAgD8AAIA/moKUvLk0jj/uIQ+9LTv2vptgYL311uA9AAAAAAAAAACmkf69P3xRPq0wsj3qFo++xVuUPNOMFLoAAAAAAAAAAAbWJL6YZ1I/O2MpPYLQ9r7bQbm9glQ3PgAAAAAAAAAAAB5RPbiesLe79JA6HogSvvvu+jn6bF6/AAAAAAAAgD9e956+1BhZP15Glr7t3uu+WxQKvzb3tb0AAAAAAAAAAJojBDym/LQ/pqG+Pd+T+L2CtPe8uLH7vQAAAAAAAAAAmv18PY9iWbodnDyzQs/lryDNAjspUb0zAACAPwAAgD/mLio99tx9umVlQznaMi00SC9xuqs1ZLgAAIA/AACAP934kT4N7ly9u7NvO9evY7q1VMC+HdGvugAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVDgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/gEqUeMhqMAWyUTQABjAF0lEdAlRPSFfzBh3V9lChoBkdAc5JXbdrO7mgHS/hoCEdAlRQ2OAAhjnV9lChoBkdAcfvSRKYiPmgHTQMBaAhHQJUUWcMEzO51fZQoaAZHQG1mHN5dGAloB00VAWgIR0CVFYfCAMDwdX2UKGgGR0BxzeDpTuOTaAdNNwFoCEdAlRYqHoHLR3V9lChoBkdAclMry1/lQ2gHTagBaAhHQJUXtJrcj7h1fZQoaAZHQDXyy3Td+G5oB0uvaAhHQJUXvjFQ2uR1fZQoaAZHQG3yveYUnG9oB00FAWgIR0CVGC7HQyAQdX2UKGgGR0Byc49Net0WaAdL4mgIR0CVGZlKsdT6dX2UKGgGR0Bw6UYAKfFraAdL+2gIR0CVGaRG+bmVdX2UKGgGR0BwQWTzND+jaAdNNQFoCEdAlR1etbLU1HV9lChoBkdAbXIgTyrgfmgHTSABaAhHQJUetwfhddF1fZQoaAZHQHGAxVQyhzxoB0v9aAhHQJUgXoOhCdB1fZQoaAZHQHD9JJPIn0FoB00SAWgIR0CVIG4rSVnmdX2UKGgGR0BwTHfcer+6aAdNCAFoCEdAlSDXCbc453V9lChoBkdAcNXe54GD+WgHTTIBaAhHQJUixC2MKkV1fZQoaAZHQHGHCBTXJ5poB00OAWgIR0CVIz1VYISldX2UKGgGR0ByMOZOSGJvaAdNAQFoCEdAlSNe3Ytg8nV9lChoBkdAcQfGzKLbYmgHTVABaAhHQJUkccrAgxJ1fZQoaAZHQHDaOHerMkhoB02BAWgIR0CVJOuOS4e+dX2UKGgGR0Bul/qRlpXZaAdNEAFoCEdAlSYuyu6mO3V9lChoBkdAcE+j94u9OGgHS/NoCEdAlScmLgn+h3V9lChoBkdAcFnAG0NSZWgHTQcBaAhHQJUoOQvHtF91fZQoaAZHQG7bkpiI+GJoB00uAWgIR0CVKFWPtD2KdX2UKGgGR0Bxgx+/gzguaAdNaQFoCEdAlSq2WhRIjHV9lChoBkdAcSx3BHkLhWgHS/hoCEdAlSxKjSG8EnV9lChoBkdAcVYPFNtZWGgHS95oCEdAlSxaP0Zm7XV9lChoBkdAcLCbqQiiZmgHS+5oCEdAlS0kWdmQKnV9lChoBkdAcxXgtOEdvWgHS/NoCEdAlS3HwLE1mHV9lChoBkdAbhz67/XGwWgHS95oCEdAlS7Va0QbuXV9lChoBkdAcdkxREWqLmgHTUMBaAhHQJUvE1ZTyax1fZQoaAZHQHNulXzUZvVoB00IAWgIR0CVMG2rXDm9dX2UKGgGR0BtLkJOWSlnaAdL6mgIR0CVMH/7iyY5dX2UKGgGR0BvR3qmj0tiaAdL9mgIR0CVMtTfzjFRdX2UKGgGR0BwyOamXPZ7aAdL52gIR0CVMw3YL9dedX2UKGgGR0BycuW5Yoy9aAdNPgFoCEdAlTOzguRLb3V9lChoBkdAcLjvUSZjQWgHS+1oCEdAlTR29pRGdHV9lChoBkdAciD+bmU4aWgHTQABaAhHQJU1mcLBsRB1fZQoaAZHQCJLSPU8V59oB0u7aAhHQJU2ETmGM4t1fZQoaAZHQHFBnW4EwFloB01PAWgIR0CVNkn0Cih4dX2UKGgGRz+zq7iADq4ZaAdLwGgIR0CVNkkdmxt6dX2UKGgGR0Bu0dYlpoK2aAdL4WgIR0CVNncsDnvEdX2UKGgGR0Bw/RGrjo6kaAdL+2gIR0CVWHcxj8UFdX2UKGgGR0BZCvAj6eoUaAdN6ANoCEdAlViguVX3g3V9lChoBkdAcY2U8FINE2gHTQYBaAhHQJVZphqj8DV1fZQoaAZHQHEqrnHNorZoB0v2aAhHQJVaGzQeFL51fZQoaAZHQEUjA8jiXIFoB0uxaAhHQJVdW+bmU4d1fZQoaAZHQHBohky1uzhoB0vfaAhHQJVeUDIRywR1fZQoaAZHQEOZsHB1s+FoB0u5aAhHQJVeUMz/IbR1fZQoaAZHQHBKXZPEbYNoB00DAWgIR0CVXtYplSTAdX2UKGgGR0BvuokE9t/GaAdNCQFoCEdAlV7x4+r2g3V9lChoBkdATB4oVmBe5WgHS8loCEdAlV8Dslb/wXV9lChoBkdAbirQ6ZH/cWgHS+5oCEdAlWDvX05EMXV9lChoBkdAcl+Q66reZWgHTSUBaAhHQJVhR5kbxVh1fZQoaAZHQHD3s63iJfpoB00dAWgIR0CVYr09hZyNdX2UKGgGR0BwM9BhQWN4aAdL8WgIR0CVZSKVII4VdX2UKGgGR0BwnvtBv73xaAdL5WgIR0CVZcml67d0dX2UKGgGR0ByYm22G7BgaAdNBwFoCEdAlWZ/+n62v3V9lChoBkdAbve9h7Vrh2gHS99oCEdAlWp4sEq2B3V9lChoBkdAbg1LUTcqOWgHS+JoCEdAlWqoPkJa7nV9lChoBkdAckuGkN4JNWgHTTgBaAhHQJVq9YwIt191fZQoaAZHQHDa/BzmwJRoB0vkaAhHQJVrel3yI551fZQoaAZHQGz9B06o2n9oB00FAWgIR0CVa7zxgAp8dX2UKGgGR0BxA998Z1mraAdL/2gIR0CVbMr0J4SpdX2UKGgGR0Bwo4NG3F1kaAdNAAFoCEdAlWzzzmOlwnV9lChoBkdAb/wp7TlT32gHS99oCEdAlW2H/T9bYHV9lChoBkdAZ3UTRplBhWgHTVYCaAhHQJVunMINVip1fZQoaAZHQHC5UKZ2IO9oB0vZaAhHQJVupnHvMKV1fZQoaAZHQHEL+9vjwQVoB00oAWgIR0CVcPYISlFddX2UKGgGR0BvVUZYPoV3aAdL5WgIR0CVcirvsqrjdX2UKGgGR0BxVPp7kXDWaAdL/mgIR0CVctrwe/5+dX2UKGgGR0BHgviT+vQoaAdLqmgIR0CVc33Jgb6ydX2UKGgGR0Bwf7yQPqcFaAdL8mgIR0CVc41G9YfXdX2UKGgGR0ByYDUiILw4aAdL12gIR0CVdc8UmD15dX2UKGgGR0Bw7/iqABkqaAdL42gIR0CVd29OymhudX2UKGgGR0BtbF74SHuaaAdL+WgIR0CVd+IS13MZdX2UKGgGR0Bw4aKMvRJFaAdL8WgIR0CVeS8DSw4bdX2UKGgGR0BxejI8yN4raAdNEQFoCEdAlXmhw++ueXV9lChoBkdAIlPDpC8e0WgHS7xoCEdAlXqoraufVnV9lChoBkdAciqgKWszVWgHS/NoCEdAlXsjzZpSJnV9lChoBkdAcjMBKcurZWgHTQMBaAhHQJV8B2FFlTZ1fZQoaAZHQGp2XM6ij+JoB02sA2gIR0CVfso99tuUdX2UKGgGR0Bwcg+3Ytg8aAdNZgFoCEdAlX+83qAz6HV9lChoBkdAcariwjdHlWgHS+poCEdAlX/nb212JXV9lChoBkdAcNUoh6jWTWgHS+1oCEdAlYACbQTmGXV9lChoBkdAb1B8VpKzzGgHS/poCEdAlYAS+L3sX3V9lChoBkdAcas8cdYGMWgHS95oCEdAlYGD987ZF3V9lChoBkdAcTAWGh24eGgHTToBaAhHQJWCay1NQCV1fZQoaAZHQGFhdCNS619oB03oA2gIR0CVgz2R7qptdX2UKGgGR0BykO5J9RaYaAdNtwFoCEdAlYQFCLMs6XV9lChoBkdAcTjpSJj2BmgHS99oCEdAlYTje9Ba93V9lChoBkdAcoW/UvwmV2gHS/ZoCEdAlYWTE3sHB3V9lChoBkdAcCzpvxYq5WgHTRYBaAhHQJWF68Hv+fh1fZQoaAZHQG1PiuMdcSpoB0vwaAhHQJWHBqgyuZF1fZQoaAZHQG8mc9GI9DBoB00cAWgIR0CViLCmuTzNdX2UKGgGR0A4J6gM+eOGaAdLrWgIR0CViZ6iCaqkdX2UKGgGR0Bw88QumJm/aAdL3WgIR0CVinFOfukUdX2UKGgGR0BwhgQbuMMraAdL5GgIR0CViqReTmnwdX2UKGgGR0BxgoWN3np0aAdL/GgIR0CVitsMAmzCdX2UKGgGR0ByWSkLx7RfaAdNPgFoCEdAlYud6PbO/3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV2gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2RhbmZvdWVyLy5jb25kYS9lbnZzL0NvbGFiRW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUvZGFuZm91ZXIvLmNvbmRhL2VudnMvQ29sYWJFbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV2gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2RhbmZvdWVyLy5jb25kYS9lbnZzL0NvbGFiRW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUvZGFuZm91ZXIvLmNvbmRhL2VudnMvQ29sYWJFbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b45c83e02d7b9f860a08e4a6d744d3187a3b56e97eb2afc598dd2d4d2a7e239f
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b030fdfbd5e60404f2aad2109ead528271459a9237b0b5b421b6b13107774c2c
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-97-generic-x86_64-with-glibc2.31 # 107~20.04.1-Ubuntu SMP Fri Feb 9 14:20:11 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.2
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.3
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.28.1
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 255.20838372089133, "std_reward": 14.609728864373313, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-08T15:28:19.893280"}
|