File size: 3,036 Bytes
861cbe1 adfd71f 861cbe1 653f0ff 861cbe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
pipeline_tag: translation
library_name: comet
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: apache-2.0
base_model:
- FacebookAI/xlm-roberta-large
---
# COMET-instant-self-confidence
This model is based on [COMET-early-exit](https://github.com/zouharvi/COMET-early-exit), which is a fork but not compatible with original Unbabel's COMET.
To run the model, you need to first install this version of COMET either with:
```bash
pip install "git+https://github.com/zouharvi/COMET-early-exit#egg=comet-early-exit&subdirectory=comet_early_exit"
```
or in editable mode:
```bash
git clone https://github.com/zouharvi/COMET-early-exit.git
cd COMET-early-exit
pip3 install -e comet_early_exit
```
This model specifically makes prediction at each of the 25 layers, both the score and the confidence.
This time, the confidence is the absolute error with respect to the final layer's prediction.
```python
model = comet_early_exit.load_from_checkpoint(comet_early_exit.download_model("zouharvi/COMET-instant-self-confidence"))
data = [
{
"src": "Can I receive my food in 10 to 15 minutes?",
"mt": "Moh bych obdržet jídlo v 10 do 15 minut?",
},
{
"src": "Can I receive my food in 10 to 15 minutes?",
"mt": "Mohl bych dostat jídlo během 10 či 15 minut?",
}
]
model_output = model.predict(data, batch_size=8, gpus=1)
# print predictions at 5th, 12th, and last layer
print("scores", model_output["scores"][0][5], model_output["scores"][0][12], model_output["scores"][0][-1])
print("estimated errors", model_output["confidences"][0][5], model_output["confidences"][0][12], model_output["confidences"][0][-1])
# two top-level outputs
assert len(model_output["scores"]) == 2 and len(model_output["confidences"]) == 2
# each output contains prediction per each layer
assert all(len(l) == 25 for l in model_output["scores"]) and all(len(l) == 25 for l in model_output["confidences"])
```
Outputs (formatted):
```
scores 75.60 86.60 85.74
estimated errors 10.48 3.52 0.83
```
This model is based on the work [Early-Exit and Instant Confidence Translation Quality Estimation](http://arxiv.org/abs/2502.14429) which can be cited as:
```
@misc{zouhar2025earlyexitinstantconfidencetranslation,
title={Early-Exit and Instant Confidence Translation Quality Estimation},
author={Vilém Zouhar and Maike Züfle and Beni Egressy and Julius Cheng and Jan Niehues},
year={2025},
eprint={2502.14429},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.14429},
}
``` |