--- pipeline_tag: translation language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: apache-2.0 base_model: - FacebookAI/xlm-roberta-large --- # COMET-instant-self-confidence This model is based on [COMET-early-exit](https://github.com/zouharvi/COMET-early-exit), which is a fork but not compatible with original Unbabel's COMET. To run the model, you need to first install this version of COMET either with: ```bash pip install "git+https://github.com/zouharvi/COMET-early-exit#egg=comet-early-exit&subdirectory=comet_early_exit" ``` or in editable mode: ```bash git clone https://github.com/zouharvi/COMET-early-exit.git cd COMET-early-exit pip3 install -e comet_early_exit ``` This model specifically makes prediction at each of the 25 layers, both the score and the confidence. This time, the confidence is the absolute error with respect to the final layer's prediction. ```python model = comet_early_exit.load_from_checkpoint(comet_early_exit.download_model("zouharvi/COMET-instant-self-confidence")) data = [ { "src": "Can I receive my food in 10 to 15 minutes?", "mt": "Moh bych obdržet jídlo v 10 do 15 minut?", }, { "src": "Can I receive my food in 10 to 15 minutes?", "mt": "Mohl bych dostat jídlo během 10 či 15 minut?", } ] model_output = model.predict(data, batch_size=8, gpus=1) # print predictions at 5th, 12th, and last layer print("scores", model_output["scores"][0][5], model_output["scores"][0][12], model_output["scores"][0][-1]) print("estimated errors", model_output["confidences"][0][5], model_output["confidences"][0][12], model_output["confidences"][0][-1]) # two top-level outputs assert len(model_output["scores"]) == 2 and len(model_output["confidences"]) == 2 # each output contains prediction per each layer assert all(len(l) == 25 for l in model_output["scores"]) and all(len(l) == 25 for l in model_output["confidences"]) ``` Outputs (formatted): ``` scores 75.60 86.60 85.74 estimated errors 10.48 3.52 0.83 ```