|
import os |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download |
|
from mup import MuReadout, set_base_shapes |
|
from mup.init import normal_ |
|
from .configuring_nt_bert import BertConfig |
|
from rotary_embedding_torch import RotaryEmbedding |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
MaskedLMOutput, |
|
) |
|
from transformers.modeling_utils import ( |
|
PreTrainedModel, |
|
apply_chunking_to_forward, |
|
find_pruneable_heads_and_indices, |
|
get_activation, |
|
prune_linear_layer, |
|
) |
|
|
|
|
|
class BertPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BertConfig |
|
base_model_prefix = "bert" |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
_keys_to_ignore_on_load_unexpected = [ |
|
r"bert\.embeddings_project\.weight", |
|
r"bert\.embeddings_project\.bias", |
|
] |
|
|
|
|
|
def _init_weights(self, module, readout_zero_init=False, query_zero_init=False): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(module, MuReadout) and readout_zero_init: |
|
module.weight.data.zero_() |
|
else: |
|
if hasattr(module.weight, "infshape"): |
|
normal_(module.weight, mean=0.0, std=self.config.initializer_range) |
|
else: |
|
module.weight.data.normal_( |
|
mean=0.0, std=self.config.initializer_range |
|
) |
|
|
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
if isinstance(module, BertSelfAttention): |
|
if query_zero_init: |
|
module.query.weight.data[:] = 0 |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
model = super().from_pretrained( |
|
pretrained_model_name_or_path, *model_args, **kwargs |
|
) |
|
|
|
|
|
if os.path.exists("base_shapes.bsh") is False: |
|
path = hf_hub_download( |
|
"zpn/human_bp_bert", "base_shapes.bsh" |
|
) |
|
else: |
|
path = "base_shapes.bsh" |
|
|
|
set_base_shapes(model, path, rescale_params=False) |
|
|
|
return model |
|
|
|
|
|
class BertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id |
|
) |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.embedding_size |
|
) |
|
self.token_type_embeddings = nn.Embedding( |
|
config.type_vocab_size, config.embedding_size |
|
) |
|
|
|
|
|
|
|
|
|
if config.embedding_norm_layer_type == "layer_norm": |
|
self.norm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) |
|
elif config.embedding_norm_layer_type == "group_norm": |
|
self.norm = nn.GroupNorm( |
|
num_groups=config.embedding_num_groups, |
|
num_channels=config.embedding_size, |
|
) |
|
else: |
|
raise ValueError( |
|
f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}" |
|
) |
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) |
|
) |
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
|
|
self.register_buffer( |
|
"token_type_ids", |
|
torch.zeros( |
|
self.position_ids.size(), |
|
dtype=torch.long, |
|
device=self.position_ids.device, |
|
), |
|
persistent=False, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
past_key_values_length=0, |
|
): |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[ |
|
:, past_key_values_length : seq_length + past_key_values_length |
|
] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand( |
|
input_shape[0], seq_length |
|
) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros( |
|
input_shape, dtype=torch.long, device=self.position_ids.device |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
|
|
if isinstance(self.norm, nn.GroupNorm): |
|
|
|
reshaped = embeddings.permute(0, 2, 1) |
|
embeddings = self.norm(reshaped) |
|
embeddings = embeddings.permute(0, 2, 1) |
|
else: |
|
embeddings = self.norm(embeddings) |
|
|
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = get_activation(config.hidden_act) |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BertAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
assert ( |
|
self.is_decoder |
|
), f"{self} should be used as a decoder model if cross attention is added" |
|
self.crossattention = BertAttention(config) |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
self_attn_past_key_value = ( |
|
past_key_value[:2] if past_key_value is not None else None |
|
) |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[ |
|
1: |
|
] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
assert hasattr( |
|
self, "crossattention" |
|
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" |
|
|
|
|
|
cross_attn_past_key_value = ( |
|
past_key_value[-2:] if past_key_value is not None else None |
|
) |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = ( |
|
outputs + cross_attention_outputs[1:-1] |
|
) |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output, |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[BertLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = ( |
|
() if output_attentions and self.config.add_cross_attention else None |
|
) |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and self.training: |
|
if use_cache: |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class AlibiPositionalBias(nn.Module): |
|
def __init__(self, heads, **kwargs): |
|
super().__init__() |
|
self.heads = heads |
|
slopes = torch.Tensor(self._get_slopes(heads)) |
|
slopes = rearrange(slopes, "h -> h 1 1") |
|
self.register_buffer("slopes", slopes, persistent=False) |
|
self.register_buffer("bias", None, persistent=False) |
|
|
|
def get_bias(self, i, j, device): |
|
i_arange = torch.arange(j - i, j, device=device) |
|
j_arange = torch.arange(j, device=device) |
|
bias = -torch.abs( |
|
rearrange(j_arange, "j -> 1 1 j") - rearrange(i_arange, "i -> 1 i 1") |
|
) |
|
return bias |
|
|
|
@staticmethod |
|
def _get_slopes(heads): |
|
def get_slopes_power_of_2(n): |
|
start = 2 ** (-(2 ** -(math.log2(n) - 3))) |
|
ratio = start |
|
return [start * ratio**i for i in range(n)] |
|
|
|
if math.log2(heads).is_integer(): |
|
return get_slopes_power_of_2(heads) |
|
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(heads)) |
|
return ( |
|
get_slopes_power_of_2(closest_power_of_2) |
|
+ get_slopes_power_of_2(2 * closest_power_of_2)[0::2][ |
|
: heads - closest_power_of_2 |
|
] |
|
) |
|
|
|
def forward(self, qk_dots): |
|
h, i, j, device = *qk_dots.shape[-3:], qk_dots.device |
|
|
|
if self.bias is not None and self.bias.shape[-1] >= j: |
|
return qk_dots + self.bias[..., :i, :j] |
|
|
|
bias = self.get_bias(i, j, device) |
|
bias = bias * self.slopes |
|
|
|
num_heads_unalibied = h - bias.shape[0] |
|
bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) |
|
self.register_buffer("bias", bias, persistent=False) |
|
|
|
return qk_dots + self.bias |
|
|
|
|
|
class BertModel(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.embeddings = BertEmbeddings(config) |
|
|
|
if config.embedding_size != config.hidden_size: |
|
self.embeddings_project = nn.Linear( |
|
config.embedding_size, config.hidden_size |
|
) |
|
|
|
self.encoder = BertEncoder(config) |
|
self.config = config |
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
batch_size, seq_length = input_shape |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(input_shape, device=device) |
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand( |
|
batch_size, seq_length |
|
) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros( |
|
input_shape, dtype=torch.long, device=device |
|
) |
|
|
|
extended_attention_mask = self.get_extended_attention_mask( |
|
attention_mask, input_shape, device |
|
) |
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
hidden_states = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
) |
|
|
|
if hasattr(self, "embeddings_project"): |
|
hidden_states = self.embeddings_project(hidden_states) |
|
|
|
hidden_states = self.encoder( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
return hidden_states |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if config.prenorm: |
|
self.norm = nn.Identity() |
|
else: |
|
if config.attn_norm_layer_type == "layer_norm": |
|
self.norm = nn.LayerNorm(config.hidden_size) |
|
elif config.attn_norm_layer_type == "group_norm": |
|
self.norm = nn.GroupNorm( |
|
num_groups=config.attn_num_groups, num_channels=config.hidden_size |
|
) |
|
else: |
|
raise ValueError( |
|
f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}" |
|
) |
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
if isinstance(self.norm, nn.GroupNorm): |
|
reshaped = hidden_states + input_tensor |
|
|
|
reshaped = reshaped.permute(0, 2, 1) |
|
hidden_states = self.norm(reshaped) |
|
hidden_states = hidden_states.permute(0, 2, 1) |
|
else: |
|
hidden_states = self.norm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr( |
|
config, "embedding_size" |
|
): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding( |
|
2 * config.max_position_embeddings - 1, self.attention_head_size |
|
) |
|
elif self.position_embedding_type == "rotary": |
|
self.rotary = RotaryEmbedding(dim=self.attention_head_size) |
|
elif self.position_embedding_type == "alibi": |
|
self.alibi = AlibiPositionalBias(self.num_attention_heads) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
if config.mup: |
|
self.attention_scaling_factor = self.attention_head_size |
|
else: |
|
self.attention_scaling_factor = math.sqrt(self.attention_head_size) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_attention_heads, |
|
self.attention_head_size, |
|
) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
if self.position_embedding_type == "rotary": |
|
query_layer = self.rotary.rotate_queries_or_keys(query_layer) |
|
key_layer = self.rotary.rotate_queries_or_keys(key_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(-1, 1) |
|
position_ids_r = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding( |
|
distance + self.max_position_embeddings - 1 |
|
) |
|
positional_embedding = positional_embedding.to( |
|
dtype=query_layer.dtype |
|
) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
relative_position_scores_key = torch.einsum( |
|
"bhrd,lrd->bhlr", key_layer, positional_embedding |
|
) |
|
attention_scores = ( |
|
attention_scores |
|
+ relative_position_scores_query |
|
+ relative_position_scores_key |
|
) |
|
|
|
|
|
attention_scores = attention_scores / self.attention_scaling_factor |
|
|
|
if self.position_embedding_type == "alibi": |
|
attention_scores = self.alibi(attention_scores) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = ( |
|
(context_layer, attention_probs) if output_attentions else (context_layer,) |
|
) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = BertSelfAttention(config) |
|
self.output = BertSelfOutput(config) |
|
if config.prenorm: |
|
if config.attn_norm_layer_type == "layer_norm": |
|
self.prenorm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps |
|
) |
|
elif config.attn_norm_layer_type == "group_norm": |
|
self.prenorm = nn.GroupNorm( |
|
num_groups=config.attn_num_groups, |
|
num_channels=config.hidden_size, |
|
eps=config.layer_norm_eps, |
|
) |
|
else: |
|
raise ValueError( |
|
f"Unknown attn_norm_layer_type {config.attn_norm_layer_type}" |
|
) |
|
else: |
|
self.prenorm = nn.Identity() |
|
|
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, |
|
self.self.num_attention_heads, |
|
self.self.attention_head_size, |
|
self.pruned_heads, |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = ( |
|
self.self.attention_head_size * self.self.num_attention_heads |
|
) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
if isinstance(self.prenorm, nn.GroupNorm): |
|
|
|
reshaped = hidden_states.permute(0, 2, 1) |
|
hidden_states = self.prenorm(reshaped) |
|
hidden_states = hidden_states.permute(0, 2, 1) |
|
else: |
|
hidden_states = self.prenorm(hidden_states) |
|
|
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[ |
|
1: |
|
] |
|
return outputs |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = get_activation(config.hidden_act) |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
if config.mup: |
|
self.decoder = MuReadout( |
|
config.hidden_size, |
|
config.vocab_size, |
|
output_mult=config.output_mult, |
|
readout_zero_init=config.readout_zero_init, |
|
bias=False, |
|
) |
|
else: |
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
|
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class BertForMaskedLM(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., |
|
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored |
|
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
position_ids, |
|
head_mask, |
|
inputs_embeds, |
|
output_attentions, |
|
output_hidden_states, |
|
return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
loss = None |
|
|
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|