{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ad4de025c80>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1152264, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691021484673835239, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGTTbL+JRUi+RvQjP5Gdjj9aSgW+UZQdP0Rj7z6uxKe+0jx9Pybp7L4F2cg9HDw9P5xDS78ldE8/iOxMPszpzT6KNz8/dh5Kvl0Fcz+YP1s/eZXPuveIFr/q09C+QoQIP3BCnr+CGAc/SuWzPne0KD9vHs0/B0EUwEf+m78wCwJAurnEP6wtQL04aRg/bgukv/etsj+drY6/6/PJPyktQsDy5Gg/V0siP4AJD74n+PE/vLreP2lKQEAAcy4+DCOXwBuEt79jSuk+q3DJP0JMVz9wQp6/ghgHP2cmNsB3tCg/Vedrv5kPLD63VwE/NWZwP/PrfztbwLa+1dHyPuPVTz/c3bE/y/e3Ptz5Ab4JF1M/SGd5v9N0/r/OGbg+blwcwCC3uz++8zK7hM74PoZPZT+DUvI9UWUbQLGVjL+jpoo8ZA1PP82N8r9K5bM+izvCv+C2Cr+s3QG/URUqP52UCUAjrnw/Rih3P6VQ9T6BtaY9vpCHP2lk/D/TRWc+763cP5wIhL+7Aeo/pb1Tvo3kl75v65o/et4mv48cGj+pcO4/tR2KP23Ux74kO6W+uxOGP2QNTz+CGAc/SuWzPne0KD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADu0Ai2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgS76PQAAAACmQfm/AAAAAKPYDb4AAAAANirlPwAAAABmiQk+AAAAAPnN9D8AAAAAa7fxvAAAAAAGAd6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUyIHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM6eJj0AAAAAIhX7vwAAAAB1mJE9AAAAAAc85j8AAAAAdhWRvQAAAAApa+g/AAAAAF2kC74AAAAAWuvnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbD5LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAWSPk9AAAAAAm14r8AAAAAg+PyvAAAAAA9XeI/AAAAAIdO570AAAAAYurhPwAAAADnNTE9AAAAAMBd+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMuHS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUp6IOwAAAACEau2/AAAAAIeQmD0AAAAAqun9PwAAAADa6Mo8AAAAAPa73T8AAAAAqnjRPQAAAADyX92/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.7695488, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJf7uBpYcNqMAWyUTegDjAF0lEdAnbuVOO8013V9lChoBkdAmTt3kcS5AmgHTegDaAhHQJ3Cfrt3OfN1fZQoaAZHQJHRs8PnSv1oB03oA2gIR0CdyAky1uzhdX2UKGgGR0CYDgShakhzaAdN6ANoCEdAnctFWwNb1XV9lChoBkdAlt5+6unuRmgHTegDaAhHQJ3WLYTTOPh1fZQoaAZHQJV+ydhAnlZoB03oA2gIR0Cd3BNsFdLQdX2UKGgGR0CWKHUg0TDgaAdN6ANoCEdAneHHSv1UVHV9lChoBkdAl6R4KlYU4GgHTegDaAhHQJ3k7+MqBmR1fZQoaAZHQJUdZ2X9ittoB03oA2gIR0Cd9EW/rSmZdX2UKGgGR0CQ4RWgezUraAdN6ANoCEdAnfoYe5nUUnV9lChoBkdAljBn7Lt/nWgHTegDaAhHQJ3/hbPhQ3x1fZQoaAZHQJjBY/keZG9oB03oA2gIR0CeAsvK2a2GdX2UKGgGR0CWQBasZHd5aAdN6ANoCEdAng2XYUWVNnV9lChoBkdAl3WWICU5dWgHTegDaAhHQJ4TZzo2XLN1fZQoaAZHQJhK/yTY/V1oB03oA2gIR0CeGO+bmU4adX2UKGgGR0CY+kgZjx0/aAdN6ANoCEdAnhw/zjFQ23V9lChoBkdAmNV4hMajvmgHTegDaAhHQJ4rRfzBhx51fZQoaAZHQJiE2p2ll9VoB03oA2gIR0CeMUPLxI8RdX2UKGgGR0CVtu4BmwqzaAdN6ANoCEdAnjbQz+FUQ3V9lChoBkdAl0t4OQQtjGgHTegDaAhHQJ46BiTdLxt1fZQoaAZHQJUKIgcLjPxoB03oA2gIR0CeRNEmplz2dX2UKGgGR0CZEWqSHM2WaAdN6ANoCEdAnkrCZjQRgHV9lChoBkdAl0pCH/Lkj2gHTegDaAhHQJ5QQrDqGDd1fZQoaAZHQJh2OMPz4DdoB03oA2gIR0CeVIpLmITHdX2UKGgGR0Ca/vGKQ7tBaAdN6ANoCEdAnmLNorWiDnV9lChoBkdAmTKlanrIHWgHTegDaAhHQJ5ojb+Lm6p1fZQoaAZHQJp/h8NQTEloB03oA2gIR0CebhpsGgSOdX2UKGgGR0CYntdEsrd4aAdN6ANoCEdAnnFF9a2Wp3V9lChoBkdAmxhhreqJdmgHTegDaAhHQJ58DJ8v25B1fZQoaAZHQJrZhPLxI8RoB03oA2gIR0Cegf8FpwjudX2UKGgGR0CXND+6y0KJaAdN6ANoCEdAnofh9Cu2Z3V9lChoBkdAmgUqDf3vhWgHTegDaAhHQJ6MfxaxHG11fZQoaAZHQJhjfohY/3ZoB03oA2gIR0CemeJe3QUpdX2UKGgGR0CXlSEg4ffXaAdN6ANoCEdAnp+puAI6bXV9lChoBkdAlaengpBomGgHTegDaAhHQJ6lJm29cr11fZQoaAZHQJdhlO0svqVoB03oA2gIR0CeqKS8rZrYdX2UKGgGR0CVyG2Dxsl+aAdN6ANoCEdAnrOnJPqLTHV9lChoBkdAlwxOfh/AkGgHTegDaAhHQJ65clVtGd91fZQoaAZHQJZMDoUzsQdoB03oA2gIR0CewDIeYD1XdX2UKGgGR0CTyz1K5CnhaAdN6ANoCEdAnsTNX1anrXV9lChoBkdAlOCLkbPyCmgHTegDaAhHQJ7RndHlOoJ1fZQoaAZHQJRjbDAJswdoB03oA2gIR0Ce13qH446wdX2UKGgGR0CQvM1XNke7aAdN6ANoCEdAntz+xwAEMnV9lChoBkdAkkF1cpsoD2gHTegDaAhHQJ7gLp1RtP51fZQoaAZHQJgd/M0P6KtoB03oA2gIR0Ce6xGNaQmvdX2UKGgGR0CW6b6j3225aAdN6ANoCEdAnvDo7Rv3rXV9lChoBkdAl4bKN+9almgHTegDaAhHQJ74iK0lZ5l1fZQoaAZHQJlEqGahHsloB03oA2gIR0Ce/W7TDwYtdX2UKGgGR0CZWCDvE0iyaAdN6ANoCEdAnwjtS619fHV9lChoBkdAmOV8gEEDAGgHTegDaAhHQJ8O4LeANG51fZQoaAZHQJinkvysjmloB03oA2gIR0CfFEnNPgvUdX2UKGgGR0Ca4bjebd8BaAdN6ANoCEdAnxdn5eqrBHV9lChoBkdAmOyaHXVbzWgHTegDaAhHQJ8ipgnc+JR1fZQoaAZHQIciSQiiZfFoB03oA2gIR0CfKZjNIK+jdX2UKGgGR0CaPTk8zQ/paAdN6ANoCEdAnzGno5ggHXV9lChoBkdAm5EtM0xdp2gHTegDaAhHQJ818R02cax1fZQoaAZHQJgOUTYdyT9oB03oA2gIR0CfQU987ZFodX2UKGgGR0CaAva86FM7aAdN6ANoCEdAn0dLv9cbBHV9lChoBkdAmKP7rcCYC2gHTegDaAhHQJ9Mxr9ETg51fZQoaAZHQIRRvFrEcbRoB03oA2gIR0CfT/s0HhS+dX2UKGgGR0CXQ7wQDmr9aAdN6ANoCEdAn1rPQKKHf3V9lChoBkdAmOsmd/axo2gHTegDaAhHQJ9iYs3AEdN1fZQoaAZHQJamcBcRlH1oB03oA2gIR0CfapwcHWz4dX2UKGgGR0CRQvxxT850aAdN6ANoCEdAn23b+glF+nV9lChoBkdAlXAitaIN3GgHTegDaAhHQJ94iKJl8PZ1fZQoaAZHQJeiWh6By0doB03oA2gIR0CffyOgQHzIdX2UKGgGR0CVT4F4s3AEaAdN6ANoCEdAn4coVuaWonV9lChoBkdAlJ8JUDMeOmgHTegDaAhHQJ+LkrJ8v251fZQoaAZHQJHp20u14PhoB03oA2gIR0CfmD7ZFocrdX2UKGgGR0CWHY+OwPiDaAdN6ANoCEdAn6C8/hVENXV9lChoBkdAlf8/LxI8Q2gHTegDaAhHQJ+mJ/qgRK91fZQoaAZHQJalXg75mAdoB03oA2gIR0CfqTN+9alldX2UKGgGR0CUQDI1+AmRaAdN6ANoCEdAn7PuDJ2dNHV9lChoBkdAiiZtwJgLJGgHTegDaAhHQJ+5xB/qgRN1fZQoaAZHQJMPj5YYBNpoB03oA2gIR0Cfv0aC+UQkdX2UKGgGR0COF30NjLB9aAdN6ANoCEdAn8J48lolEHV9lChoBkdAl0TPetSydGgHTegDaAhHQJ/PbYEnssx1fZQoaAZHQJVzKsySFGpoB03oA2gIR0Cf1y2f029+dX2UKGgGR0CXpnC1qnFYaAdN6ANoCEdAn9yuG47Rv3V9lChoBkdAlKQ3LJSzgWgHTegDaAhHQJ/fw3IdU851fZQoaAZHQJcNfTpgTh5oB03oA2gIR0Cf6olTWGypdX2UKGgGR0CYMZsrNGExaAdN6ANoCEdAn/BTCP6sQ3V9lChoBkdAhz2EB8x9HGgHTegDaAhHQJ/1x5TqB3B1fZQoaAZHQJlDfMY/FBJoB03oA2gIR0Cf+NXaJyhjdX2UKGgGR0CYslfD1oQGaAdN6ANoCEdAoANLF4s3AHV9lChoBkdAlftusDGLk2gHTegDaAhHQKAG6Ti83/B1fZQoaAZHQJYEqylenhtoB03oA2gIR0CgCZM72cridX2UKGgGR0CUYY9A5aNdaAdN6ANoCEdAoAs8KArhBXV9lChoBkdAl5vMcABDHGgHTegDaAhHQKAQuG0NSZV1fZQoaAZHQJiuBvWH1vloB03oA2gIR0CgE5+QuEmIdX2UKGgGR0CWFVESM98raAdN6ANoCEdAoBZeepXIVHV9lChoBkdAlHZoFeOXFGgHTegDaAhHQKAX+0LMLWt1fZQoaAZHQJepS01IiC9oB03oA2gIR0CgH0pdjXnRdX2UKGgGR0CYo2m/336AaAdN6ANoCEdAoCJyFPBSDXV9lChoBkdAls/A/gR9PWgHTegDaAhHQKAlHuXNTtN1fZQoaAZHQJasij59E1FoB03oA2gIR0CgJqtfgJkYdX2UKGgGR0CXMyOqebuuaAdN6ANoCEdAoCwLa4+bE3V9lChoBkdAmIaD3/Pw/mgHTegDaAhHQKAu5kXk5p91fZQoaAZHQJbRSWKMvRJoB03oA2gIR0CgMaa6BiCrdX2UKGgGR0CbEzK3NLUTaAdN6ANoCEdAoDMw3974SHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 36229, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}