zslrmhb commited on
Commit
40303c3
·
1 Parent(s): 620ef12

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.76 +/- 0.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b941a2af5f822e523d0858b7f33eafc4097aee63ba02b3c12df2b926c0651bf7
3
+ size 108160
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ad4dd2f8670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7ad4dd2fd1c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 465908,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691023746685177975,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADs9IPwWNsD0Ieh4+lGElP+b/Ob4lfTu+1JJPvAkDkD+b87w/61ilP8G2uz/3H6g8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATkNJP1nm6T2Ri6+8o8ckP03FC74fEcS+ATcNPUGukj9SErg/+HugPyUR1j/CTy++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAOz0g/BY2wPQh6Hj4lanK9h/6QPXfHPDuUYSU/5v85viV9O74nY6i8vsntvYxHjDzUkk+8CQOQP5vzvD8t7QW+0qg4PY3/MD/rWKU/wba7P/cfqDx9kpc4XQcWvdnoRz6UaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.7844094 0.08620647 0.15476239]\n [ 0.6460202 -0.18164024 -0.18309458]\n [-0.01266928 1.1250926 1.4761842 ]\n [ 1.2917761 1.4665147 0.02052305]]",
38
+ "desired_goal": "[[ 0.78618324 0.11420888 -0.02142886]\n [ 0.6436712 -0.13649483 -0.38294312]\n [ 0.03447628 1.1459428 1.4380591 ]\n [ 1.2537832 1.6723982 -0.17120269]]",
39
+ "observation": "[[ 7.8440940e-01 8.6206473e-02 1.5476239e-01 -5.9183259e-02\n 7.0797972e-02 2.8805414e-03]\n [ 6.4602017e-01 -1.8164024e-01 -1.8309458e-01 -2.0555092e-02\n -1.1610745e-01 1.7123960e-02]\n [-1.2669284e-02 1.1250926e+00 1.4761842e+00 -1.3078757e-01\n 4.5082875e-02 6.9139940e-01]\n [ 1.2917761e+00 1.4665147e+00 2.0523055e-02 7.2275267e-05\n -3.6628116e-02 1.9522418e-01]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWR8TvSmh872lSkk9jFOLPBrV1z2ZEWU+2B2WvbDMBj4Hsiw9r9WCPWsHGb52X1s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.03591857 -0.11895973 0.04914345]\n [ 0.01700761 0.10538693 0.22369994]\n [-0.07329911 0.1316402 0.04216197]\n [ 0.06388413 -0.14944236 0.21423134]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.5341,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2/eov17h97+UhpRSlIwBbJRLMowBdJRHQJRS6VHFxXJ1fZQoaAZoCWgPQwjDuYYZGk/pv5SGlFKUaBVLMmgWR0CUUnEHdGiIdX2UKGgGaAloD0MI1VktsMfE97+UhpRSlGgVSzJoFkdAlFHx4dIXj3V9lChoBmgJaA9DCDhOCvMe5+y/lIaUUpRoFUsyaBZHQJRRYm6XjVB1fZQoaAZoCWgPQwithy8TRcjjv5SGlFKUaBVLMmgWR0CUVRbdJrckdX2UKGgGaAloD0MIHR8tzhiGCsCUhpRSlGgVSzJoFkdAlFSeBDohZHV9lChoBmgJaA9DCGuA0lCjkPa/lIaUUpRoFUsyaBZHQJRUHuIAOrh1fZQoaAZoCWgPQwiCx7d3DRoBwJSGlFKUaBVLMmgWR0CUU48l5WzXdX2UKGgGaAloD0MIpIriVdYWAcCUhpRSlGgVSzJoFkdAlFdPbCaZyHV9lChoBmgJaA9DCLCMDd3sj+e/lIaUUpRoFUsyaBZHQJRW1rBTGYN1fZQoaAZoCWgPQwgFxCRcyKPwv5SGlFKUaBVLMmgWR0CUVld2Pkq+dX2UKGgGaAloD0MI7S3lfLH36r+UhpRSlGgVSzJoFkdAlFXHcQAdXHV9lChoBmgJaA9DCDQr24e8BQDAlIaUUpRoFUsyaBZHQJRZgjLSuyN1fZQoaAZoCWgPQwjBrbt5qsPkv5SGlFKUaBVLMmgWR0CUWQmplz2fdX2UKGgGaAloD0MIUmFsIchB+r+UhpRSlGgVSzJoFkdAlFiKiblRxnV9lChoBmgJaA9DCA0YJH1axeO/lIaUUpRoFUsyaBZHQJRX+r6tT1l1fZQoaAZoCWgPQwgNw0fElGgDwJSGlFKUaBVLMmgWR0CUW7Dm8ujAdX2UKGgGaAloD0MIwr0yb9V1/L+UhpRSlGgVSzJoFkdAlFs3/kvK2nV9lChoBmgJaA9DCDJxqyAGOu+/lIaUUpRoFUsyaBZHQJRauLgn+hp1fZQoaAZoCWgPQwgYz6ChfwLuv5SGlFKUaBVLMmgWR0CUWih3JPqLdX2UKGgGaAloD0MIjdDP1OuWCMCUhpRSlGgVSzJoFkdAlF3v2Xb/O3V9lChoBmgJaA9DCHUiwVQza+m/lIaUUpRoFUsyaBZHQJRddv2oNut1fZQoaAZoCWgPQwjeWbvtQnMHwJSGlFKUaBVLMmgWR0CUXPeLvTgEdX2UKGgGaAloD0MIbeaQ1EKJ/7+UhpRSlGgVSzJoFkdAlFxnfuTibXV9lChoBmgJaA9DCItQbAVNS/6/lIaUUpRoFUsyaBZHQJRgDt+kP+Z1fZQoaAZoCWgPQwj+0TdpGpT+v5SGlFKUaBVLMmgWR0CUX5ZW7voedX2UKGgGaAloD0MIW5TZIJPMBMCUhpRSlGgVSzJoFkdAlF8XGS6lL3V9lChoBmgJaA9DCLPQzmkWKADAlIaUUpRoFUsyaBZHQJRehwsGxD91fZQoaAZoCWgPQwh7MCk+PiH4v5SGlFKUaBVLMmgWR0CUYlfE4vOAdX2UKGgGaAloD0MINUQV/gzv/b+UhpRSlGgVSzJoFkdAlGHfNeMQ3HV9lChoBmgJaA9DCMDrM2d9ivK/lIaUUpRoFUsyaBZHQJRhYB1cMVl1fZQoaAZoCWgPQwjRz9TrFgHnv5SGlFKUaBVLMmgWR0CUYNBVdX1bdX2UKGgGaAloD0MIHjLlQ1BVBcCUhpRSlGgVSzJoFkdAlGUzTvy9VXV9lChoBmgJaA9DCJV/La9czwDAlIaUUpRoFUsyaBZHQJRkvYSQHRl1fZQoaAZoCWgPQwgjhbLw9VUEwJSGlFKUaBVLMmgWR0CUZD/u9eyBdX2UKGgGaAloD0MIaFpiZTTy5r+UhpRSlGgVSzJoFkdAlGOyQT238XV9lChoBmgJaA9DCOBjsOJUKwfAlIaUUpRoFUsyaBZHQJRouhHskY51fZQoaAZoCWgPQwjQCgxZ3Wrrv5SGlFKUaBVLMmgWR0CUaELwF1SwdX2UKGgGaAloD0MIFO0qpPzk/L+UhpRSlGgVSzJoFkdAlGfFIy0rsnV9lChoBmgJaA9DCCao4VtYt+C/lIaUUpRoFUsyaBZHQJRnNv99+gF1fZQoaAZoCWgPQwjiH7b0aKr7v5SGlFKUaBVLMmgWR0CUbEwsGxD9dX2UKGgGaAloD0MIVtgMcEH2AcCUhpRSlGgVSzJoFkdAlGvWFnIyTXV9lChoBmgJaA9DCBe86CtIkwXAlIaUUpRoFUsyaBZHQJRrWFFlTWJ1fZQoaAZoCWgPQwj186YiFUbqv5SGlFKUaBVLMmgWR0CUasnQ6ZH/dX2UKGgGaAloD0MIHec24V7Z/7+UhpRSlGgVSzJoFkdAlG/3mA9V3nV9lChoBmgJaA9DCKZfIt46/+S/lIaUUpRoFUsyaBZHQJRvgIE8q4J1fZQoaAZoCWgPQwjjqNxELe0DwJSGlFKUaBVLMmgWR0CUbwLORkmQdX2UKGgGaAloD0MIuyh64GOw6r+UhpRSlGgVSzJoFkdAlG50c81XNnV9lChoBmgJaA9DCDp5kQn4VQTAlIaUUpRoFUsyaBZHQJRyw+otL+R1fZQoaAZoCWgPQwiiKNAn8iTuv5SGlFKUaBVLMmgWR0CUcktGus90dX2UKGgGaAloD0MIP1jGhm42A8CUhpRSlGgVSzJoFkdAlHHLjo6jnHV9lChoBmgJaA9DCGq932jHTf2/lIaUUpRoFUsyaBZHQJRxO0lZ5iV1fZQoaAZoCWgPQwgBh1ClZi8CwJSGlFKUaBVLMmgWR0CUdN/UONHZdX2UKGgGaAloD0MI6/1GO2747r+UhpRSlGgVSzJoFkdAlHRntShrWXV9lChoBmgJaA9DCOhoVUs6SgLAlIaUUpRoFUsyaBZHQJRz6JpFkQR1fZQoaAZoCWgPQwjDu1zEd+Lrv5SGlFKUaBVLMmgWR0CUc1jzI3irdX2UKGgGaAloD0MIwtoYO+Fl8L+UhpRSlGgVSzJoFkdAlHczoEB8yHV9lChoBmgJaA9DCHMOnglNkua/lIaUUpRoFUsyaBZHQJR2uyquKXR1fZQoaAZoCWgPQwiI8ZpXdVbkv5SGlFKUaBVLMmgWR0CUdjxKQJXydX2UKGgGaAloD0MIqYk+H2XE5b+UhpRSlGgVSzJoFkdAlHWsz2vjfnV9lChoBmgJaA9DCB+F61G4nvq/lIaUUpRoFUsyaBZHQJR5pg6U7jl1fZQoaAZoCWgPQwi4yD1d3XHxv5SGlFKUaBVLMmgWR0CUeS2/i5uqdX2UKGgGaAloD0MItABtq1ln8b+UhpRSlGgVSzJoFkdAlHiu0gKWs3V9lChoBmgJaA9DCNKJBFPNbPa/lIaUUpRoFUsyaBZHQJR4HwqiGnJ1fZQoaAZoCWgPQwhjmuleJ3Xrv5SGlFKUaBVLMmgWR0CUfAvPkaMrdX2UKGgGaAloD0MIi2zn+6nx6r+UhpRSlGgVSzJoFkdAlHuTMeOn23V9lChoBmgJaA9DCBTpfk5BPvO/lIaUUpRoFUsyaBZHQJR7E9/z8P51fZQoaAZoCWgPQwgYPiKmRBLrv5SGlFKUaBVLMmgWR0CUeoQYk3S8dX2UKGgGaAloD0MITRHg9C5e9r+UhpRSlGgVSzJoFkdAlH5IXCTEBXV9lChoBmgJaA9DCNjXutQIfeO/lIaUUpRoFUsyaBZHQJR9z7Ikqtp1fZQoaAZoCWgPQwjO4O8Xs6X6v5SGlFKUaBVLMmgWR0CUfVCKaXrudX2UKGgGaAloD0MIVMTpJFvd7r+UhpRSlGgVSzJoFkdAlHzBBJI1+HV9lChoBmgJaA9DCHC044bfTfK/lIaUUpRoFUsyaBZHQJSAlhoduHh1fZQoaAZoCWgPQwiE8j6O5sjmv5SGlFKUaBVLMmgWR0CUgB1JDmbLdX2UKGgGaAloD0MISOLl6VwR9b+UhpRSlGgVSzJoFkdAlH+d8NQTEnV9lChoBmgJaA9DCFZhM8AFWei/lIaUUpRoFUsyaBZHQJR/DaVUuL91fZQoaAZoCWgPQwj0xd6LL9rev5SGlFKUaBVLMmgWR0CUgtSvTw2EdX2UKGgGaAloD0MIVfoJZ7cW7L+UhpRSlGgVSzJoFkdAlIJcNpdrwnV9lChoBmgJaA9DCLjM6bKY2PW/lIaUUpRoFUsyaBZHQJSB3QeFL391fZQoaAZoCWgPQwgTDr3Fw/v0v5SGlFKUaBVLMmgWR0CUgU0UoKD1dX2UKGgGaAloD0MITBsOSwO/5L+UhpRSlGgVSzJoFkdAlIUEUbkwOHV9lChoBmgJaA9DCDUnLzIBv9S/lIaUUpRoFUsyaBZHQJSEi83++/R1fZQoaAZoCWgPQwhr1hnfFxfyv5SGlFKUaBVLMmgWR0CUhAzcRDkVdX2UKGgGaAloD0MIsW8nEeHf5b+UhpRSlGgVSzJoFkdAlIN9I5HVgHV9lChoBmgJaA9DCLVwWYXNgOG/lIaUUpRoFUsyaBZHQJSHN9jPOY91fZQoaAZoCWgPQwgE5iFTPoTov5SGlFKUaBVLMmgWR0CUhr8R+SbIdX2UKGgGaAloD0MIJhsPttjt4L+UhpRSlGgVSzJoFkdAlIY/7FbV0HV9lChoBmgJaA9DCNoCQuvhS+q/lIaUUpRoFUsyaBZHQJSFr/Khcqx1fZQoaAZoCWgPQwimtWlsr4Xqv5SGlFKUaBVLMmgWR0CUiV6Skj5cdX2UKGgGaAloD0MImIkipG5n5b+UhpRSlGgVSzJoFkdAlIjmaH9FWnV9lChoBmgJaA9DCJAwDFhyFfe/lIaUUpRoFUsyaBZHQJSIZygf2bp1fZQoaAZoCWgPQwjcZFQZxl3wv5SGlFKUaBVLMmgWR0CUh9dQO4G2dX2UKGgGaAloD0MIQwQcQpUa5b+UhpRSlGgVSzJoFkdAlIuh2r4nGHV9lChoBmgJaA9DCIqSkEjbePS/lIaUUpRoFUsyaBZHQJSLKQeV9nd1fZQoaAZoCWgPQwjBApgycADyv5SGlFKUaBVLMmgWR0CUiqqSowVTdX2UKGgGaAloD0MIoffGEABc8r+UhpRSlGgVSzJoFkdAlIoaVdHDrXV9lChoBmgJaA9DCDDysiYWOPa/lIaUUpRoFUsyaBZHQJSNxUEPlMh1fZQoaAZoCWgPQwg1RuuoagLvv5SGlFKUaBVLMmgWR0CUjUy44Ia+dX2UKGgGaAloD0MIH0dzZOUX5L+UhpRSlGgVSzJoFkdAlIzNUwSJ0nV9lChoBmgJaA9DCHxfXKrSlve/lIaUUpRoFUsyaBZHQJSMPQ/oq1B1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 23295,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7349fe8ab73718aab52306dcc9d8546c45c002a9d1a18afa3f52cbe96eb6853f
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:087dc6f69b17a8b1da65638d57c3997599c56b2a0e70325329e0fcac0f3f36b4
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ad4dd2f8670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ad4dd2fd1c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 465908, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691023746685177975, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADs9IPwWNsD0Ieh4+lGElP+b/Ob4lfTu+1JJPvAkDkD+b87w/61ilP8G2uz/3H6g8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATkNJP1nm6T2Ri6+8o8ckP03FC74fEcS+ATcNPUGukj9SErg/+HugPyUR1j/CTy++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAOz0g/BY2wPQh6Hj4lanK9h/6QPXfHPDuUYSU/5v85viV9O74nY6i8vsntvYxHjDzUkk+8CQOQP5vzvD8t7QW+0qg4PY3/MD/rWKU/wba7P/cfqDx9kpc4XQcWvdnoRz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.7844094 0.08620647 0.15476239]\n [ 0.6460202 -0.18164024 -0.18309458]\n [-0.01266928 1.1250926 1.4761842 ]\n [ 1.2917761 1.4665147 0.02052305]]", "desired_goal": "[[ 0.78618324 0.11420888 -0.02142886]\n [ 0.6436712 -0.13649483 -0.38294312]\n [ 0.03447628 1.1459428 1.4380591 ]\n [ 1.2537832 1.6723982 -0.17120269]]", "observation": "[[ 7.8440940e-01 8.6206473e-02 1.5476239e-01 -5.9183259e-02\n 7.0797972e-02 2.8805414e-03]\n [ 6.4602017e-01 -1.8164024e-01 -1.8309458e-01 -2.0555092e-02\n -1.1610745e-01 1.7123960e-02]\n [-1.2669284e-02 1.1250926e+00 1.4761842e+00 -1.3078757e-01\n 4.5082875e-02 6.9139940e-01]\n [ 1.2917761e+00 1.4665147e+00 2.0523055e-02 7.2275267e-05\n -3.6628116e-02 1.9522418e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWR8TvSmh872lSkk9jFOLPBrV1z2ZEWU+2B2WvbDMBj4Hsiw9r9WCPWsHGb52X1s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03591857 -0.11895973 0.04914345]\n [ 0.01700761 0.10538693 0.22369994]\n [-0.07329911 0.1316402 0.04216197]\n [ 0.06388413 -0.14944236 0.21423134]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5341, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2/eov17h97+UhpRSlIwBbJRLMowBdJRHQJRS6VHFxXJ1fZQoaAZoCWgPQwjDuYYZGk/pv5SGlFKUaBVLMmgWR0CUUnEHdGiIdX2UKGgGaAloD0MI1VktsMfE97+UhpRSlGgVSzJoFkdAlFHx4dIXj3V9lChoBmgJaA9DCDhOCvMe5+y/lIaUUpRoFUsyaBZHQJRRYm6XjVB1fZQoaAZoCWgPQwithy8TRcjjv5SGlFKUaBVLMmgWR0CUVRbdJrckdX2UKGgGaAloD0MIHR8tzhiGCsCUhpRSlGgVSzJoFkdAlFSeBDohZHV9lChoBmgJaA9DCGuA0lCjkPa/lIaUUpRoFUsyaBZHQJRUHuIAOrh1fZQoaAZoCWgPQwiCx7d3DRoBwJSGlFKUaBVLMmgWR0CUU48l5WzXdX2UKGgGaAloD0MIpIriVdYWAcCUhpRSlGgVSzJoFkdAlFdPbCaZyHV9lChoBmgJaA9DCLCMDd3sj+e/lIaUUpRoFUsyaBZHQJRW1rBTGYN1fZQoaAZoCWgPQwgFxCRcyKPwv5SGlFKUaBVLMmgWR0CUVld2Pkq+dX2UKGgGaAloD0MI7S3lfLH36r+UhpRSlGgVSzJoFkdAlFXHcQAdXHV9lChoBmgJaA9DCDQr24e8BQDAlIaUUpRoFUsyaBZHQJRZgjLSuyN1fZQoaAZoCWgPQwjBrbt5qsPkv5SGlFKUaBVLMmgWR0CUWQmplz2fdX2UKGgGaAloD0MIUmFsIchB+r+UhpRSlGgVSzJoFkdAlFiKiblRxnV9lChoBmgJaA9DCA0YJH1axeO/lIaUUpRoFUsyaBZHQJRX+r6tT1l1fZQoaAZoCWgPQwgNw0fElGgDwJSGlFKUaBVLMmgWR0CUW7Dm8ujAdX2UKGgGaAloD0MIwr0yb9V1/L+UhpRSlGgVSzJoFkdAlFs3/kvK2nV9lChoBmgJaA9DCDJxqyAGOu+/lIaUUpRoFUsyaBZHQJRauLgn+hp1fZQoaAZoCWgPQwgYz6ChfwLuv5SGlFKUaBVLMmgWR0CUWih3JPqLdX2UKGgGaAloD0MIjdDP1OuWCMCUhpRSlGgVSzJoFkdAlF3v2Xb/O3V9lChoBmgJaA9DCHUiwVQza+m/lIaUUpRoFUsyaBZHQJRddv2oNut1fZQoaAZoCWgPQwjeWbvtQnMHwJSGlFKUaBVLMmgWR0CUXPeLvTgEdX2UKGgGaAloD0MIbeaQ1EKJ/7+UhpRSlGgVSzJoFkdAlFxnfuTibXV9lChoBmgJaA9DCItQbAVNS/6/lIaUUpRoFUsyaBZHQJRgDt+kP+Z1fZQoaAZoCWgPQwj+0TdpGpT+v5SGlFKUaBVLMmgWR0CUX5ZW7voedX2UKGgGaAloD0MIW5TZIJPMBMCUhpRSlGgVSzJoFkdAlF8XGS6lL3V9lChoBmgJaA9DCLPQzmkWKADAlIaUUpRoFUsyaBZHQJRehwsGxD91fZQoaAZoCWgPQwh7MCk+PiH4v5SGlFKUaBVLMmgWR0CUYlfE4vOAdX2UKGgGaAloD0MINUQV/gzv/b+UhpRSlGgVSzJoFkdAlGHfNeMQ3HV9lChoBmgJaA9DCMDrM2d9ivK/lIaUUpRoFUsyaBZHQJRhYB1cMVl1fZQoaAZoCWgPQwjRz9TrFgHnv5SGlFKUaBVLMmgWR0CUYNBVdX1bdX2UKGgGaAloD0MIHjLlQ1BVBcCUhpRSlGgVSzJoFkdAlGUzTvy9VXV9lChoBmgJaA9DCJV/La9czwDAlIaUUpRoFUsyaBZHQJRkvYSQHRl1fZQoaAZoCWgPQwgjhbLw9VUEwJSGlFKUaBVLMmgWR0CUZD/u9eyBdX2UKGgGaAloD0MIaFpiZTTy5r+UhpRSlGgVSzJoFkdAlGOyQT238XV9lChoBmgJaA9DCOBjsOJUKwfAlIaUUpRoFUsyaBZHQJRouhHskY51fZQoaAZoCWgPQwjQCgxZ3Wrrv5SGlFKUaBVLMmgWR0CUaELwF1SwdX2UKGgGaAloD0MIFO0qpPzk/L+UhpRSlGgVSzJoFkdAlGfFIy0rsnV9lChoBmgJaA9DCCao4VtYt+C/lIaUUpRoFUsyaBZHQJRnNv99+gF1fZQoaAZoCWgPQwjiH7b0aKr7v5SGlFKUaBVLMmgWR0CUbEwsGxD9dX2UKGgGaAloD0MIVtgMcEH2AcCUhpRSlGgVSzJoFkdAlGvWFnIyTXV9lChoBmgJaA9DCBe86CtIkwXAlIaUUpRoFUsyaBZHQJRrWFFlTWJ1fZQoaAZoCWgPQwj186YiFUbqv5SGlFKUaBVLMmgWR0CUasnQ6ZH/dX2UKGgGaAloD0MIHec24V7Z/7+UhpRSlGgVSzJoFkdAlG/3mA9V3nV9lChoBmgJaA9DCKZfIt46/+S/lIaUUpRoFUsyaBZHQJRvgIE8q4J1fZQoaAZoCWgPQwjjqNxELe0DwJSGlFKUaBVLMmgWR0CUbwLORkmQdX2UKGgGaAloD0MIuyh64GOw6r+UhpRSlGgVSzJoFkdAlG50c81XNnV9lChoBmgJaA9DCDp5kQn4VQTAlIaUUpRoFUsyaBZHQJRyw+otL+R1fZQoaAZoCWgPQwiiKNAn8iTuv5SGlFKUaBVLMmgWR0CUcktGus90dX2UKGgGaAloD0MIP1jGhm42A8CUhpRSlGgVSzJoFkdAlHHLjo6jnHV9lChoBmgJaA9DCGq932jHTf2/lIaUUpRoFUsyaBZHQJRxO0lZ5iV1fZQoaAZoCWgPQwgBh1ClZi8CwJSGlFKUaBVLMmgWR0CUdN/UONHZdX2UKGgGaAloD0MI6/1GO2747r+UhpRSlGgVSzJoFkdAlHRntShrWXV9lChoBmgJaA9DCOhoVUs6SgLAlIaUUpRoFUsyaBZHQJRz6JpFkQR1fZQoaAZoCWgPQwjDu1zEd+Lrv5SGlFKUaBVLMmgWR0CUc1jzI3irdX2UKGgGaAloD0MIwtoYO+Fl8L+UhpRSlGgVSzJoFkdAlHczoEB8yHV9lChoBmgJaA9DCHMOnglNkua/lIaUUpRoFUsyaBZHQJR2uyquKXR1fZQoaAZoCWgPQwiI8ZpXdVbkv5SGlFKUaBVLMmgWR0CUdjxKQJXydX2UKGgGaAloD0MIqYk+H2XE5b+UhpRSlGgVSzJoFkdAlHWsz2vjfnV9lChoBmgJaA9DCB+F61G4nvq/lIaUUpRoFUsyaBZHQJR5pg6U7jl1fZQoaAZoCWgPQwi4yD1d3XHxv5SGlFKUaBVLMmgWR0CUeS2/i5uqdX2UKGgGaAloD0MItABtq1ln8b+UhpRSlGgVSzJoFkdAlHiu0gKWs3V9lChoBmgJaA9DCNKJBFPNbPa/lIaUUpRoFUsyaBZHQJR4HwqiGnJ1fZQoaAZoCWgPQwhjmuleJ3Xrv5SGlFKUaBVLMmgWR0CUfAvPkaMrdX2UKGgGaAloD0MIi2zn+6nx6r+UhpRSlGgVSzJoFkdAlHuTMeOn23V9lChoBmgJaA9DCBTpfk5BPvO/lIaUUpRoFUsyaBZHQJR7E9/z8P51fZQoaAZoCWgPQwgYPiKmRBLrv5SGlFKUaBVLMmgWR0CUeoQYk3S8dX2UKGgGaAloD0MITRHg9C5e9r+UhpRSlGgVSzJoFkdAlH5IXCTEBXV9lChoBmgJaA9DCNjXutQIfeO/lIaUUpRoFUsyaBZHQJR9z7Ikqtp1fZQoaAZoCWgPQwjO4O8Xs6X6v5SGlFKUaBVLMmgWR0CUfVCKaXrudX2UKGgGaAloD0MIVMTpJFvd7r+UhpRSlGgVSzJoFkdAlHzBBJI1+HV9lChoBmgJaA9DCHC044bfTfK/lIaUUpRoFUsyaBZHQJSAlhoduHh1fZQoaAZoCWgPQwiE8j6O5sjmv5SGlFKUaBVLMmgWR0CUgB1JDmbLdX2UKGgGaAloD0MISOLl6VwR9b+UhpRSlGgVSzJoFkdAlH+d8NQTEnV9lChoBmgJaA9DCFZhM8AFWei/lIaUUpRoFUsyaBZHQJR/DaVUuL91fZQoaAZoCWgPQwj0xd6LL9rev5SGlFKUaBVLMmgWR0CUgtSvTw2EdX2UKGgGaAloD0MIVfoJZ7cW7L+UhpRSlGgVSzJoFkdAlIJcNpdrwnV9lChoBmgJaA9DCLjM6bKY2PW/lIaUUpRoFUsyaBZHQJSB3QeFL391fZQoaAZoCWgPQwgTDr3Fw/v0v5SGlFKUaBVLMmgWR0CUgU0UoKD1dX2UKGgGaAloD0MITBsOSwO/5L+UhpRSlGgVSzJoFkdAlIUEUbkwOHV9lChoBmgJaA9DCDUnLzIBv9S/lIaUUpRoFUsyaBZHQJSEi83++/R1fZQoaAZoCWgPQwhr1hnfFxfyv5SGlFKUaBVLMmgWR0CUhAzcRDkVdX2UKGgGaAloD0MIsW8nEeHf5b+UhpRSlGgVSzJoFkdAlIN9I5HVgHV9lChoBmgJaA9DCLVwWYXNgOG/lIaUUpRoFUsyaBZHQJSHN9jPOY91fZQoaAZoCWgPQwgE5iFTPoTov5SGlFKUaBVLMmgWR0CUhr8R+SbIdX2UKGgGaAloD0MIJhsPttjt4L+UhpRSlGgVSzJoFkdAlIY/7FbV0HV9lChoBmgJaA9DCNoCQuvhS+q/lIaUUpRoFUsyaBZHQJSFr/Khcqx1fZQoaAZoCWgPQwimtWlsr4Xqv5SGlFKUaBVLMmgWR0CUiV6Skj5cdX2UKGgGaAloD0MImIkipG5n5b+UhpRSlGgVSzJoFkdAlIjmaH9FWnV9lChoBmgJaA9DCJAwDFhyFfe/lIaUUpRoFUsyaBZHQJSIZygf2bp1fZQoaAZoCWgPQwjcZFQZxl3wv5SGlFKUaBVLMmgWR0CUh9dQO4G2dX2UKGgGaAloD0MIQwQcQpUa5b+UhpRSlGgVSzJoFkdAlIuh2r4nGHV9lChoBmgJaA9DCIqSkEjbePS/lIaUUpRoFUsyaBZHQJSLKQeV9nd1fZQoaAZoCWgPQwjBApgycADyv5SGlFKUaBVLMmgWR0CUiqqSowVTdX2UKGgGaAloD0MIoffGEABc8r+UhpRSlGgVSzJoFkdAlIoaVdHDrXV9lChoBmgJaA9DCDDysiYWOPa/lIaUUpRoFUsyaBZHQJSNxUEPlMh1fZQoaAZoCWgPQwg1RuuoagLvv5SGlFKUaBVLMmgWR0CUjUy44Ia+dX2UKGgGaAloD0MIH0dzZOUX5L+UhpRSlGgVSzJoFkdAlIzNUwSJ0nV9lChoBmgJaA9DCHxfXKrSlve/lIaUUpRoFUsyaBZHQJSMPQ/oq1B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 23295, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (303 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.7576175997033715, "std_reward": 0.22557290779395453, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-03T01:11:17.303652"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5b7dd2b63fbd7f496d22fa4f7b29b7de3a9d08536088b32dbe549afea368aa9
3
+ size 2387