--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: ca split: test args: ca metrics: - name: Wer type: wer value: 4.727636467562161 --- # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1187 - Wer: 4.7276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1072 | 1.02 | 1000 | 0.1637 | 7.0329 | | 0.0239 | 3.02 | 2000 | 0.1784 | 7.0277 | | 0.0507 | 5.02 | 3000 | 0.1754 | 6.5773 | | 0.0571 | 7.02 | 4000 | 0.1620 | 6.5047 | | 0.0193 | 9.02 | 5000 | 0.1821 | 6.4887 | | 0.0625 | 11.02 | 6000 | 0.1443 | 6.7585 | | 0.0752 | 13.02 | 7000 | 0.1653 | 5.9097 | | 0.0359 | 15.02 | 8000 | 0.1406 | 5.8760 | | 0.0565 | 17.01 | 9000 | 0.1496 | 5.9680 | | 0.0196 | 19.01 | 10000 | 0.1788 | 5.2746 | | 0.0215 | 21.01 | 11000 | 0.1539 | 5.3895 | | 0.0178 | 23.01 | 12000 | 0.1800 | 5.3764 | | 0.0114 | 25.01 | 13000 | 0.1709 | 5.2078 | | 0.0123 | 27.01 | 14000 | 0.1827 | 5.2003 | | 0.0337 | 29.01 | 15000 | 0.1553 | 5.3655 | | 0.0108 | 31.01 | 16000 | 0.1476 | 4.9151 | | 0.0194 | 33.01 | 17000 | 0.1396 | 4.8477 | | 0.0472 | 35.0 | 18000 | 0.1202 | 4.8717 | | 0.0401 | 37.0 | 19000 | 0.1494 | 4.6716 | | 0.0127 | 39.0 | 20000 | 0.1187 | 4.7276 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3