--- language: - pt license: apache-2.0 base_model: openai/whisper-large-v2 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Large-V2 Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 pt type: mozilla-foundation/common_voice_13_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 5.875201261788191 --- # Whisper Large-V2 Portuguese This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_13_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.4680 - Wer: 5.8752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0874 | 3.53 | 1000 | 0.1593 | 4.9765 | | 0.0318 | 7.05 | 2000 | 0.2263 | 5.4365 | | 0.0121 | 10.58 | 3000 | 0.2966 | 5.5630 | | 0.005 | 14.11 | 4000 | 0.3400 | 5.6123 | | 0.0036 | 17.64 | 5000 | 0.3554 | 5.6600 | | 0.0034 | 21.16 | 6000 | 0.3640 | 5.6370 | | 0.0021 | 24.69 | 7000 | 0.3714 | 5.6485 | | 0.0016 | 28.22 | 8000 | 0.3962 | 5.6255 | | 0.0013 | 31.75 | 9000 | 0.3960 | 5.6731 | | 0.0009 | 35.27 | 10000 | 0.4107 | 5.7027 | | 0.0008 | 38.8 | 11000 | 0.3981 | 5.9869 | | 0.0006 | 42.33 | 12000 | 0.4097 | 5.7010 | | 0.0005 | 45.86 | 13000 | 0.4226 | 5.8144 | | 0.0004 | 49.38 | 14000 | 0.4330 | 5.8259 | | 0.0004 | 52.91 | 15000 | 0.4415 | 5.7914 | | 0.0003 | 56.44 | 16000 | 0.4490 | 5.7848 | | 0.0003 | 59.96 | 17000 | 0.4553 | 5.8013 | | 0.0002 | 63.49 | 18000 | 0.4625 | 5.7963 | | 0.0002 | 67.02 | 19000 | 0.4663 | 5.8522 | | 0.0002 | 70.55 | 20000 | 0.4680 | 5.8752 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.1