Upload PPO LunarLander-v2-1st trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-1st.zip +3 -0
- ppo-LunarLander-v2-1st/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-1st/data +99 -0
- ppo-LunarLander-v2-1st/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-1st/policy.pth +3 -0
- ppo-LunarLander-v2-1st/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-1st/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.00 +/- 20.96
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bdc401a7520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bdc401a75b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bdc401a7640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bdc401a76d0>", "_build": "<function ActorCriticPolicy._build at 0x7bdc401a7760>", "forward": "<function ActorCriticPolicy.forward at 0x7bdc401a77f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bdc401a7880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bdc401a7910>", "_predict": "<function ActorCriticPolicy._predict at 0x7bdc401a79a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bdc401a7a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bdc401a7ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bdc401a7b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bdc5f4ef680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710005548756755135, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMa9Bj70mUU//lIEvd/4zb5+JVo+mDblvQAAAAAAAAAAMx/TO6Gk5z0ZbjQ+1sGPvpYB4j2qZU09AAAAAAAAAAAz3tE8MZU7PhM58TtLJ4W+7tejujs8QzwAAAAAAAAAAJqZerp0Hkw+eN1UPSEaib5T2lO8O0BRPQAAAAAAAAAA5b6ovnypKT/mpBW9w8LVvqZc3b4p7ac9AAAAAAAAAADNijy8nsKWPgxpBD2HV56+ZtZBPOlMljwAAAAAAAAAAMBjjD2w5yk/0NnJvXW4yr46xr07ygAqvQAAAAAAAAAAzSnsPCGnyD11ZYq+L3RuviLnAL7Rwq68AAAAAAAAAADNmOi8Nv4lvKvar7xQFSM9s0EqPYPjFb0AAIA/AACAP2aUIb2cHbQ/Mk/uvrOs6L1fl6o7E4bOvQAAAAAAAAAAZl+AvCmMb7ptBrG4UfogtPQjcjulbsw3AACAPwAAgD8AhMo8tjxkvLqiIz7axlM820nkvf9GLj0AAIA/AACAPzM0RL3tYoY/WeABvg1R7b6i0L69qRA8vQAAAAAAAAAATXvOvSgXED+C3WY+20exvhzgRT3OFF09AAAAAAAAAAAmWTk+BpeDP5v9VT0UWO2+u6+CPqlLr70AAAAAAAAAADNZ4Ly2tBO843awO1E+0TzodIe9AqKqPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGnnHzYmLOMAWyUTQEBjAF0lEdAvWZIDHOryXV9lChoBkdAbl17P6be/GgHS+JoCEdAvWZnGACnxnV9lChoBkdAcIXGbTc7AGgHS/FoCEdAvWZoI4VARnV9lChoBkdAb5V9gnc+JWgHTRYBaAhHQL1mdVObiId1fZQoaAZHQHPn4bsF+uxoB0v2aAhHQL1meL4etCB1fZQoaAZHQHG/Wz8gpz9oB0vaaAhHQL1mgHzpX6t1fZQoaAZHQHIZt6Tnq3VoB0vWaAhHQL1mjeFtbcJ1fZQoaAZHQHNSeF10T11oB0vbaAhHQL1m1RFI/aB1fZQoaAZHQHE9tTo+wC9oB0vZaAhHQL1nBZ0Syt51fZQoaAZHQHDV8qOLiuNoB0vkaAhHQL1nG6C17Y11fZQoaAZHQHCVO10DEFZoB0vuaAhHQL1nQLFXJYF1fZQoaAZHQG97TN+so2JoB0vlaAhHQL1nRf6oESx1fZQoaAZHQHAl/fwZwXJoB0veaAhHQL1nUPX05EN1fZQoaAZHQHF7HBP9DQZoB0vVaAhHQL1neEDhcZ91fZQoaAZHQHNCZ1aGHpNoB0viaAhHQL1nhCbc45t1fZQoaAZHQHIcXTEzfrNoB0vaaAhHQL1njG6f8Mx1fZQoaAZHQHG72EXcgyNoB0veaAhHQL1nrjABT4t1fZQoaAZHQHAC+QEIPbxoB0voaAhHQL1n4tpVS4x1fZQoaAZHQHGSVlGwzLxoB0v4aAhHQL1n4uxrzoV1fZQoaAZHQHKfUnPVurJoB00QAWgIR0C9Z+jisGPgdX2UKGgGR0Agg5/9YOlPaAdLkGgIR0C9Z+1RHf/FdX2UKGgGR0BxJj5vcafjaAdL/mgIR0C9Z/wWJrLydX2UKGgGR0ByIDaCcwxnaAdNEAFoCEdAvWgcXhwVCXV9lChoBkdAcV2ukDZDiWgHS+NoCEdAvWhBi2DxsnV9lChoBkdAbRFa11GLDWgHTSoBaAhHQL1oXLowEhd1fZQoaAZHQG4BjqW1MM9oB0vraAhHQL1ok6STyJ91fZQoaAZHQHLDkg8r7O5oB0vRaAhHQL1on+10DEF1fZQoaAZHQHJ4o2bXpW5oB0vfaAhHQL1oqd2gWad1fZQoaAZHQHKXKsEJSixoB0vlaAhHQL1orXm/3391fZQoaAZHQHJUliF0xM5oB0vQaAhHQL1o1jmjj711fZQoaAZHQHGz9dmg8KZoB0vxaAhHQL1o9c5bQkZ1fZQoaAZHQHDtQflp48loB00AAWgIR0C9aRp9JBgNdX2UKGgGR0BxKNRIjGDMaAdNCwFoCEdAvWlbUnXumnV9lChoBkdAcHQA7PppvmgHS+poCEdAvWlqmJm/WXV9lChoBkdAcZZcnmaH9GgHS/1oCEdAvWly+GoJiXV9lChoBkdAco83bEgnt2gHTQIBaAhHQL1pflP8AJd1fZQoaAZHQHLPNECvHLloB00IAWgIR0C9aYuqvNeMdX2UKGgGR0BzyyZeAuqWaAdL+2gIR0C9aaVA7gbZdX2UKGgGR0ByKXuSfUWmaAdL8mgIR0C9adg/9pAVdX2UKGgGR0ByJBlQMx46aAdNAgFoCEdAvWnU9dNWVHV9lChoBkdAcJbNSIgvDmgHS+poCEdAvWoHIbOu73V9lChoBkdAcLZnHvMKTmgHS/loCEdAvWor1OCXhXV9lChoBkdAcdxUiY9gW2gHS/RoCEdAvWoyRaHKwXV9lChoBkdAcZ+DqW1MNGgHTQIBaAhHQL1qRTpPhyd1fZQoaAZHQG3xfZVXFLpoB0v3aAhHQL1qZsMAmzB1fZQoaAZHQGiqtcv/R3NoB02rAWgIR0C9aohwEQoTdX2UKGgGR0BvwOCPIXCTaAdL+2gIR0C9ao4QOFxodX2UKGgGR0BvRXd9Dx9YaAdLzmgIR0C9aqXqmj0udX2UKGgGR0BynqZpi7TVaAdL1GgIR0C9arxQrMC+dX2UKGgGR0ByLa2nbZezaAdLz2gIR0C9arxUvPC3dX2UKGgGR0BzSizAvcrRaAdLyWgIR0C9astQ40djdX2UKGgGR0BzWaji4rjHaAdL4GgIR0C9at6CcwxndX2UKGgGR0BxYRSFXaJzaAdL42gIR0C9awdHtnf3dX2UKGgGR0ByYdbPhQ3xaAdL5GgIR0C9azVT3qRmdX2UKGgGR0BxN4uqWC2+aAdL52gIR0C9az1KK509dX2UKGgGR0ByUscQyylfaAdL02gIR0C9a2jch1TzdX2UKGgGR0BwMNuhsZYQaAdNAAFoCEdAvWuKOgg5inV9lChoBkdAcCFDFId2gWgHS99oCEdAvWu0/Y8MeHV9lChoBkdAcNr2yLQ5WGgHS/VoCEdAvWu2YMOPNnV9lChoBkdAcqVhx5s0pGgHTQYBaAhHQL1rvsPJ7sx1fZQoaAZHQHDX3RG+bmVoB0vVaAhHQL1rxpMYdhl1fZQoaAZHQHDJDoZAIIFoB0vlaAhHQL1r48jiXIF1fZQoaAZHQHJhay4Wk8BoB0vTaAhHQL1r9RgqmTF1fZQoaAZHQHILwhOgxrVoB0vnaAhHQL1r/w2ETQF1fZQoaAZHQHAc9OIqLCNoB0vjaAhHQL1sHFXJYDF1fZQoaAZHQHHnI1gpjMFoB0vmaAhHQL1sNNKAavR1fZQoaAZHQFQdL5AQg9xoB0uuaAhHQL1sQakRBeJ1fZQoaAZHQHC83B+F10VoB00XAWgIR0C9bFjGgi/xdX2UKGgGR0BxGd7KJVKgaAdNDgFoCEdAvWyYPczqKXV9lChoBkdAczPzC1qnFmgHTRQBaAhHQL1s0+mWMS91fZQoaAZHQHB/d1yNn5BoB0vmaAhHQL1s6D5j6N51fZQoaAZHQHG/fL1VYIVoB00AAWgIR0C9bO8NhE0BdX2UKGgGR0ByJNQ1rIo3aAdL2WgIR0C9bQGjfvWpdX2UKGgGR0Bxz3OiWVu8aAdL5WgIR0C9bROd9UjtdX2UKGgGR0BxdAOCoS+QaAdL3mgIR0C9bTWfkFOgdX2UKGgGR0BzHdWDHwPRaAdL1GgIR0C9bTlfmcOLdX2UKGgGR0BznR6jWTX8aAdL+2gIR0C9bUS3kPtldX2UKGgGR0BwUax5cC5maAdNAQFoCEdAvW1G6QNkOXV9lChoBkdAct1uy/sVtWgHS+1oCEdAvW1l1PnB+HV9lChoBkdAb7RGd7OVxGgHS+VoCEdAvW13f3vhInV9lChoBkdAcbmvqTr3TWgHS+BoCEdAvW2ThP0qY3V9lChoBkdAcigURnOB2GgHS/NoCEdAvW2hdTo+wHV9lChoBkdAcj/dMCcPOWgHS+loCEdAvW21HAh0Q3V9lChoBkdAbniT5ftx/GgHS+RoCEdAvW3qH58BuHV9lChoBkdAcIVk+otL+WgHS+RoCEdAvW4jo5ggHXV9lChoBkdAcVsXf642CWgHS+BoCEdAvW43GyX2NHV9lChoBkdAcjB6po9LYmgHS+toCEdAvW5CTvAoHHV9lChoBkdAccs8ZUDMeWgHS+9oCEdAvW5fiiqQzXV9lChoBkdAcdwXuVopQWgHS+hoCEdAvW5mJUHY6HV9lChoBkdAck89F4LThGgHS9poCEdAvW53JEH+qHV9lChoBkdAcE3Ttb9qDmgHS9ZoCEdAvW59/BnBcnV9lChoBkdAcBvK8tf5UWgHS+1oCEdAvW6O6Zpi7XV9lChoBkdAc7+tZ3cHnmgHS8VoCEdAvW6WkYXO4XV9lChoBkdAcarxxT850mgHS/loCEdAvW6sjnmq53V9lChoBkdAcaV2bXpW3mgHS/ZoCEdAvW7TtKIznHV9lChoBkdAcP1bFS88LmgHS9toCEdAvW8X+6y0KXV9lChoBkdAcDlff4yoGmgHS/9oCEdAvW8tUBGQS3V9lChoBkdAZSbpHI6sAGgHTegDaAhHQL1vLZ7HAAR1fZQoaAZHQHFQwvlEJBxoB00NAWgIR0C9b12uX/o8dX2UKGgGR0BxXm3Ytg8baAdL8mgIR0C9b4+melKsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-1st.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e202108243225cd7e7ba0f6248afb11a37c09a0abbcf8aeb9708f9254b6529b9
|
3 |
+
size 147980
|
ppo-LunarLander-v2-1st/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-1st/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7bdc401a7520>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bdc401a75b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bdc401a7640>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bdc401a76d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7bdc401a7760>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7bdc401a77f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7bdc401a7880>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bdc401a7910>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7bdc401a79a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bdc401a7a30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bdc401a7ac0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7bdc401a7b50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bdc5f4ef680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2031616,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1710005548756755135,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMa9Bj70mUU//lIEvd/4zb5+JVo+mDblvQAAAAAAAAAAMx/TO6Gk5z0ZbjQ+1sGPvpYB4j2qZU09AAAAAAAAAAAz3tE8MZU7PhM58TtLJ4W+7tejujs8QzwAAAAAAAAAAJqZerp0Hkw+eN1UPSEaib5T2lO8O0BRPQAAAAAAAAAA5b6ovnypKT/mpBW9w8LVvqZc3b4p7ac9AAAAAAAAAADNijy8nsKWPgxpBD2HV56+ZtZBPOlMljwAAAAAAAAAAMBjjD2w5yk/0NnJvXW4yr46xr07ygAqvQAAAAAAAAAAzSnsPCGnyD11ZYq+L3RuviLnAL7Rwq68AAAAAAAAAADNmOi8Nv4lvKvar7xQFSM9s0EqPYPjFb0AAIA/AACAP2aUIb2cHbQ/Mk/uvrOs6L1fl6o7E4bOvQAAAAAAAAAAZl+AvCmMb7ptBrG4UfogtPQjcjulbsw3AACAPwAAgD8AhMo8tjxkvLqiIz7axlM820nkvf9GLj0AAIA/AACAPzM0RL3tYoY/WeABvg1R7b6i0L69qRA8vQAAAAAAAAAATXvOvSgXED+C3WY+20exvhzgRT3OFF09AAAAAAAAAAAmWTk+BpeDP5v9VT0UWO2+u6+CPqlLr70AAAAAAAAAADNZ4Ly2tBO843awO1E+0TzodIe9AqKqPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGnnHzYmLOMAWyUTQEBjAF0lEdAvWZIDHOryXV9lChoBkdAbl17P6be/GgHS+JoCEdAvWZnGACnxnV9lChoBkdAcIXGbTc7AGgHS/FoCEdAvWZoI4VARnV9lChoBkdAb5V9gnc+JWgHTRYBaAhHQL1mdVObiId1fZQoaAZHQHPn4bsF+uxoB0v2aAhHQL1meL4etCB1fZQoaAZHQHG/Wz8gpz9oB0vaaAhHQL1mgHzpX6t1fZQoaAZHQHIZt6Tnq3VoB0vWaAhHQL1mjeFtbcJ1fZQoaAZHQHNSeF10T11oB0vbaAhHQL1m1RFI/aB1fZQoaAZHQHE9tTo+wC9oB0vZaAhHQL1nBZ0Syt51fZQoaAZHQHDV8qOLiuNoB0vkaAhHQL1nG6C17Y11fZQoaAZHQHCVO10DEFZoB0vuaAhHQL1nQLFXJYF1fZQoaAZHQG97TN+so2JoB0vlaAhHQL1nRf6oESx1fZQoaAZHQHAl/fwZwXJoB0veaAhHQL1nUPX05EN1fZQoaAZHQHF7HBP9DQZoB0vVaAhHQL1neEDhcZ91fZQoaAZHQHNCZ1aGHpNoB0viaAhHQL1nhCbc45t1fZQoaAZHQHIcXTEzfrNoB0vaaAhHQL1njG6f8Mx1fZQoaAZHQHG72EXcgyNoB0veaAhHQL1nrjABT4t1fZQoaAZHQHAC+QEIPbxoB0voaAhHQL1n4tpVS4x1fZQoaAZHQHGSVlGwzLxoB0v4aAhHQL1n4uxrzoV1fZQoaAZHQHKfUnPVurJoB00QAWgIR0C9Z+jisGPgdX2UKGgGR0Agg5/9YOlPaAdLkGgIR0C9Z+1RHf/FdX2UKGgGR0BxJj5vcafjaAdL/mgIR0C9Z/wWJrLydX2UKGgGR0ByIDaCcwxnaAdNEAFoCEdAvWgcXhwVCXV9lChoBkdAcV2ukDZDiWgHS+NoCEdAvWhBi2DxsnV9lChoBkdAbRFa11GLDWgHTSoBaAhHQL1oXLowEhd1fZQoaAZHQG4BjqW1MM9oB0vraAhHQL1ok6STyJ91fZQoaAZHQHLDkg8r7O5oB0vRaAhHQL1on+10DEF1fZQoaAZHQHJ4o2bXpW5oB0vfaAhHQL1oqd2gWad1fZQoaAZHQHKXKsEJSixoB0vlaAhHQL1orXm/3391fZQoaAZHQHJUliF0xM5oB0vQaAhHQL1o1jmjj711fZQoaAZHQHGz9dmg8KZoB0vxaAhHQL1o9c5bQkZ1fZQoaAZHQHDtQflp48loB00AAWgIR0C9aRp9JBgNdX2UKGgGR0BxKNRIjGDMaAdNCwFoCEdAvWlbUnXumnV9lChoBkdAcHQA7PppvmgHS+poCEdAvWlqmJm/WXV9lChoBkdAcZZcnmaH9GgHS/1oCEdAvWly+GoJiXV9lChoBkdAco83bEgnt2gHTQIBaAhHQL1pflP8AJd1fZQoaAZHQHLPNECvHLloB00IAWgIR0C9aYuqvNeMdX2UKGgGR0BzyyZeAuqWaAdL+2gIR0C9aaVA7gbZdX2UKGgGR0ByKXuSfUWmaAdL8mgIR0C9adg/9pAVdX2UKGgGR0ByJBlQMx46aAdNAgFoCEdAvWnU9dNWVHV9lChoBkdAcJbNSIgvDmgHS+poCEdAvWoHIbOu73V9lChoBkdAcLZnHvMKTmgHS/loCEdAvWor1OCXhXV9lChoBkdAcdxUiY9gW2gHS/RoCEdAvWoyRaHKwXV9lChoBkdAcZ+DqW1MNGgHTQIBaAhHQL1qRTpPhyd1fZQoaAZHQG3xfZVXFLpoB0v3aAhHQL1qZsMAmzB1fZQoaAZHQGiqtcv/R3NoB02rAWgIR0C9aohwEQoTdX2UKGgGR0BvwOCPIXCTaAdL+2gIR0C9ao4QOFxodX2UKGgGR0BvRXd9Dx9YaAdLzmgIR0C9aqXqmj0udX2UKGgGR0BynqZpi7TVaAdL1GgIR0C9arxQrMC+dX2UKGgGR0ByLa2nbZezaAdLz2gIR0C9arxUvPC3dX2UKGgGR0BzSizAvcrRaAdLyWgIR0C9astQ40djdX2UKGgGR0BzWaji4rjHaAdL4GgIR0C9at6CcwxndX2UKGgGR0BxYRSFXaJzaAdL42gIR0C9awdHtnf3dX2UKGgGR0ByYdbPhQ3xaAdL5GgIR0C9azVT3qRmdX2UKGgGR0BxN4uqWC2+aAdL52gIR0C9az1KK509dX2UKGgGR0ByUscQyylfaAdL02gIR0C9a2jch1TzdX2UKGgGR0BwMNuhsZYQaAdNAAFoCEdAvWuKOgg5inV9lChoBkdAcCFDFId2gWgHS99oCEdAvWu0/Y8MeHV9lChoBkdAcNr2yLQ5WGgHS/VoCEdAvWu2YMOPNnV9lChoBkdAcqVhx5s0pGgHTQYBaAhHQL1rvsPJ7sx1fZQoaAZHQHDX3RG+bmVoB0vVaAhHQL1rxpMYdhl1fZQoaAZHQHDJDoZAIIFoB0vlaAhHQL1r48jiXIF1fZQoaAZHQHJhay4Wk8BoB0vTaAhHQL1r9RgqmTF1fZQoaAZHQHILwhOgxrVoB0vnaAhHQL1r/w2ETQF1fZQoaAZHQHAc9OIqLCNoB0vjaAhHQL1sHFXJYDF1fZQoaAZHQHHnI1gpjMFoB0vmaAhHQL1sNNKAavR1fZQoaAZHQFQdL5AQg9xoB0uuaAhHQL1sQakRBeJ1fZQoaAZHQHC83B+F10VoB00XAWgIR0C9bFjGgi/xdX2UKGgGR0BxGd7KJVKgaAdNDgFoCEdAvWyYPczqKXV9lChoBkdAczPzC1qnFmgHTRQBaAhHQL1s0+mWMS91fZQoaAZHQHB/d1yNn5BoB0vmaAhHQL1s6D5j6N51fZQoaAZHQHG/fL1VYIVoB00AAWgIR0C9bO8NhE0BdX2UKGgGR0ByJNQ1rIo3aAdL2WgIR0C9bQGjfvWpdX2UKGgGR0Bxz3OiWVu8aAdL5WgIR0C9bROd9UjtdX2UKGgGR0BxdAOCoS+QaAdL3mgIR0C9bTWfkFOgdX2UKGgGR0BzHdWDHwPRaAdL1GgIR0C9bTlfmcOLdX2UKGgGR0BznR6jWTX8aAdL+2gIR0C9bUS3kPtldX2UKGgGR0BwUax5cC5maAdNAQFoCEdAvW1G6QNkOXV9lChoBkdAct1uy/sVtWgHS+1oCEdAvW1l1PnB+HV9lChoBkdAb7RGd7OVxGgHS+VoCEdAvW13f3vhInV9lChoBkdAcbmvqTr3TWgHS+BoCEdAvW2ThP0qY3V9lChoBkdAcigURnOB2GgHS/NoCEdAvW2hdTo+wHV9lChoBkdAcj/dMCcPOWgHS+loCEdAvW21HAh0Q3V9lChoBkdAbniT5ftx/GgHS+RoCEdAvW3qH58BuHV9lChoBkdAcIVk+otL+WgHS+RoCEdAvW4jo5ggHXV9lChoBkdAcVsXf642CWgHS+BoCEdAvW43GyX2NHV9lChoBkdAcjB6po9LYmgHS+toCEdAvW5CTvAoHHV9lChoBkdAccs8ZUDMeWgHS+9oCEdAvW5fiiqQzXV9lChoBkdAcdwXuVopQWgHS+hoCEdAvW5mJUHY6HV9lChoBkdAck89F4LThGgHS9poCEdAvW53JEH+qHV9lChoBkdAcE3Ttb9qDmgHS9ZoCEdAvW59/BnBcnV9lChoBkdAcBvK8tf5UWgHS+1oCEdAvW6O6Zpi7XV9lChoBkdAc7+tZ3cHnmgHS8VoCEdAvW6WkYXO4XV9lChoBkdAcarxxT850mgHS/loCEdAvW6sjnmq53V9lChoBkdAcaV2bXpW3mgHS/ZoCEdAvW7TtKIznHV9lChoBkdAcP1bFS88LmgHS9toCEdAvW8X+6y0KXV9lChoBkdAcDlff4yoGmgHS/9oCEdAvW8tUBGQS3V9lChoBkdAZSbpHI6sAGgHTegDaAhHQL1vLZ7HAAR1fZQoaAZHQHFQwvlEJBxoB00NAWgIR0C9b12uX/o8dX2UKGgGR0BxXm3Ytg8baAdL8mgIR0C9b4+melKsdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 372,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 6,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-1st/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f85720c0959e6ee566ad501553f6bc68965eefbe701cb21c260058b90ec92754
|
3 |
+
size 88362
|
ppo-LunarLander-v2-1st/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34a36fa6d76f5a42e9fc7c03c2d5773b51e6a7879ba4be513ba0ce05d0233bdf
|
3 |
+
size 43762
|
ppo-LunarLander-v2-1st/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-1st/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (155 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.995459, "std_reward": 20.96163659745896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-09T18:31:41.874200"}
|