File size: 1,196 Bytes
d86e0d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- zwang199/autonlp-data-traffic_nlp_binary
co2_eq_emissions: 1.171798205242445
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 537215209
- CO2 Emissions (in grams): 1.171798205242445
## Validation Metrics
- Loss: 0.3879534602165222
- Accuracy: 0.8597449908925319
- Precision: 0.8318042813455657
- Recall: 0.9251700680272109
- AUC: 0.9230158730158731
- F1: 0.8760064412238325
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/zwang199/autonlp-traffic_nlp_binary-537215209
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("zwang199/autonlp-traffic_nlp_binary-537215209", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("zwang199/autonlp-traffic_nlp_binary-537215209", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |