Upload cluster_all_layers_nonorm_afterrope_group.py
Browse files
cluster_all_layers_nonorm_afterrope_group.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
from tqdm import tqdm
|
8 |
+
# Data directory
|
9 |
+
# data_dir = '../feats_offset'
|
10 |
+
|
11 |
+
|
12 |
+
# Parameter settings
|
13 |
+
feature_dim = 5120
|
14 |
+
num_clusters = 1000 # Number of clusters
|
15 |
+
#batch_size = 10000000
|
16 |
+
batch_size = 1000000
|
17 |
+
#batch_size=200000
|
18 |
+
niter = 20
|
19 |
+
num_tensor_file = int(batch_size/64/576)
|
20 |
+
save_folder = f"/sensei-fs/users/wezhao/projects/data/cluster/centroids_faiss_K_c1k_bs1m_iter_{niter}_nonorm_all_layers_afterrope_group"
|
21 |
+
os.system("mkdir "+save_folder)
|
22 |
+
for layer_idx in range(40):
|
23 |
+
os.system("mkdir "+save_folder+"/"+str(layer_idx))
|
24 |
+
#if layer_idx<=30:
|
25 |
+
# continue
|
26 |
+
data_dir = '/sensei-fs/users/wezhao/projects/proj-phu/DenseToken/data/key_states_save_13b_all_layers_after_rope/'+str(layer_idx)
|
27 |
+
# Get a list of all .pt files in the directory
|
28 |
+
pt_files = glob.glob(os.path.join(data_dir, '*.pth'))
|
29 |
+
|
30 |
+
print(f"Found {len(pt_files)} .pth files.")
|
31 |
+
|
32 |
+
print("num_tensor_file:",num_tensor_file)
|
33 |
+
tensor_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith('.pth') ]
|
34 |
+
random.shuffle(tensor_files)
|
35 |
+
|
36 |
+
# Initialize GPU resources
|
37 |
+
print("Initializing GPU resources...")
|
38 |
+
res = faiss.StandardGpuResources()
|
39 |
+
|
40 |
+
print("Setting up clustering parameters...")
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
# Data iterator function
|
45 |
+
def data_iterator(tensor_files):
|
46 |
+
#
|
47 |
+
for i in range(0, len(tensor_files), num_tensor_file):
|
48 |
+
# Read three tensor files at a time
|
49 |
+
tensors = []
|
50 |
+
# import pdb; pdb.set_trace()
|
51 |
+
for j in range(num_tensor_file):
|
52 |
+
if i + j < len(tensor_files):
|
53 |
+
print("loading " + str(i)+" "+str(j)+tensor_files[i + j])
|
54 |
+
tensor = torch.load(tensor_files[i + j])
|
55 |
+
# import pdb; pdb.set_trace()
|
56 |
+
tensor = tensor.reshape(-1, feature_dim).cpu().numpy().astype(np.float32)
|
57 |
+
# import pdb; pdb.set_trace()
|
58 |
+
|
59 |
+
tensors.append(tensor)
|
60 |
+
|
61 |
+
if tensors:
|
62 |
+
yield np.concatenate(tensors, axis=0)
|
63 |
+
|
64 |
+
# Fit the MiniBatchKMeans model incrementally
|
65 |
+
count = 0
|
66 |
+
# import pdb; pdb.set_trace()
|
67 |
+
for data_batch in tqdm(data_iterator(tensor_files), desc="Processing batches"):
|
68 |
+
data_batch = data_batch.reshape(-1, 40, 128)
|
69 |
+
for i in range(40):
|
70 |
+
data = data_batch[:,i,:]
|
71 |
+
# faiss.normalize_L2(data)
|
72 |
+
kmeans = faiss.Kmeans(d=128, k=num_clusters, niter=niter, gpu=True, verbose=True)
|
73 |
+
# print("====")
|
74 |
+
# Train k-means clustering model on GPU
|
75 |
+
print("Training k-means clustering model on GPU...")
|
76 |
+
data = np.ascontiguousarray(data, dtype=np.float32)
|
77 |
+
# import pdb; pdb.set_trace()
|
78 |
+
# faiss.copy_array_to_vector(np.zeros((100000,5120),dtype=np.float32).ravel(), kmeans.centroids)
|
79 |
+
# faiss.vector_to_array(kmeans.centroids)
|
80 |
+
#kmeans.train(data_batch, index)
|
81 |
+
kmeans.train(data)
|
82 |
+
print("k-means training completed.")
|
83 |
+
# Extract centroids
|
84 |
+
print("Extracting centroids...")
|
85 |
+
centroids = kmeans.centroids
|
86 |
+
|
87 |
+
np.save(save_folder+"/"+f"{layer_idx}/{i}.npy", centroids)
|
88 |
+
#np.save(f"temp/{count}.npy", centroids)
|
89 |
+
print("Centroids saved layer "+str(layer_idx))
|
90 |
+
count += 1
|
91 |
+
break
|