zxcgqq commited on
Commit
ea21f0b
·
1 Parent(s): f3c8d2c

Upload 10 files

Browse files
stable-diffusion/scripts/download_first_stages.sh ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ wget -O models/first_stage_models/kl-f4/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f4.zip
3
+ wget -O models/first_stage_models/kl-f8/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f8.zip
4
+ wget -O models/first_stage_models/kl-f16/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f16.zip
5
+ wget -O models/first_stage_models/kl-f32/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f32.zip
6
+ wget -O models/first_stage_models/vq-f4/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4.zip
7
+ wget -O models/first_stage_models/vq-f4-noattn/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4-noattn.zip
8
+ wget -O models/first_stage_models/vq-f8/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8.zip
9
+ wget -O models/first_stage_models/vq-f8-n256/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip
10
+ wget -O models/first_stage_models/vq-f16/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f16.zip
11
+
12
+
13
+
14
+ cd models/first_stage_models/kl-f4
15
+ unzip -o model.zip
16
+
17
+ cd ../kl-f8
18
+ unzip -o model.zip
19
+
20
+ cd ../kl-f16
21
+ unzip -o model.zip
22
+
23
+ cd ../kl-f32
24
+ unzip -o model.zip
25
+
26
+ cd ../vq-f4
27
+ unzip -o model.zip
28
+
29
+ cd ../vq-f4-noattn
30
+ unzip -o model.zip
31
+
32
+ cd ../vq-f8
33
+ unzip -o model.zip
34
+
35
+ cd ../vq-f8-n256
36
+ unzip -o model.zip
37
+
38
+ cd ../vq-f16
39
+ unzip -o model.zip
40
+
41
+ cd ../..
stable-diffusion/scripts/download_models.sh ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ wget -O models/ldm/celeba256/celeba-256.zip https://ommer-lab.com/files/latent-diffusion/celeba.zip
3
+ wget -O models/ldm/ffhq256/ffhq-256.zip https://ommer-lab.com/files/latent-diffusion/ffhq.zip
4
+ wget -O models/ldm/lsun_churches256/lsun_churches-256.zip https://ommer-lab.com/files/latent-diffusion/lsun_churches.zip
5
+ wget -O models/ldm/lsun_beds256/lsun_beds-256.zip https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip
6
+ wget -O models/ldm/text2img256/model.zip https://ommer-lab.com/files/latent-diffusion/text2img.zip
7
+ wget -O models/ldm/cin256/model.zip https://ommer-lab.com/files/latent-diffusion/cin.zip
8
+ wget -O models/ldm/semantic_synthesis512/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip
9
+ wget -O models/ldm/semantic_synthesis256/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis256.zip
10
+ wget -O models/ldm/bsr_sr/model.zip https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip
11
+ wget -O models/ldm/layout2img-openimages256/model.zip https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip
12
+ wget -O models/ldm/inpainting_big/model.zip https://ommer-lab.com/files/latent-diffusion/inpainting_big.zip
13
+
14
+
15
+
16
+ cd models/ldm/celeba256
17
+ unzip -o celeba-256.zip
18
+
19
+ cd ../ffhq256
20
+ unzip -o ffhq-256.zip
21
+
22
+ cd ../lsun_churches256
23
+ unzip -o lsun_churches-256.zip
24
+
25
+ cd ../lsun_beds256
26
+ unzip -o lsun_beds-256.zip
27
+
28
+ cd ../text2img256
29
+ unzip -o model.zip
30
+
31
+ cd ../cin256
32
+ unzip -o model.zip
33
+
34
+ cd ../semantic_synthesis512
35
+ unzip -o model.zip
36
+
37
+ cd ../semantic_synthesis256
38
+ unzip -o model.zip
39
+
40
+ cd ../bsr_sr
41
+ unzip -o model.zip
42
+
43
+ cd ../layout2img-openimages256
44
+ unzip -o model.zip
45
+
46
+ cd ../inpainting_big
47
+ unzip -o model.zip
48
+
49
+ cd ../..
stable-diffusion/scripts/img2img.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """make variations of input image"""
2
+
3
+ import argparse, os, sys, glob
4
+ import PIL
5
+ import torch
6
+ import numpy as np
7
+ from omegaconf import OmegaConf
8
+ from PIL import Image
9
+ from tqdm import tqdm, trange
10
+ from itertools import islice
11
+ from einops import rearrange, repeat
12
+ from torchvision.utils import make_grid
13
+ from torch import autocast
14
+ from contextlib import nullcontext
15
+ import time
16
+ from pytorch_lightning import seed_everything
17
+
18
+ from ldm.util import instantiate_from_config
19
+ from ldm.models.diffusion.ddim import DDIMSampler
20
+ from ldm.models.diffusion.plms import PLMSSampler
21
+
22
+
23
+ def chunk(it, size):
24
+ it = iter(it)
25
+ return iter(lambda: tuple(islice(it, size)), ())
26
+
27
+
28
+ def load_model_from_config(config, ckpt, verbose=False):
29
+ print(f"Loading model from {ckpt}")
30
+ pl_sd = torch.load(ckpt, map_location="cpu")
31
+ if "global_step" in pl_sd:
32
+ print(f"Global Step: {pl_sd['global_step']}")
33
+ sd = pl_sd["state_dict"]
34
+ model = instantiate_from_config(config.model)
35
+ m, u = model.load_state_dict(sd, strict=False)
36
+ if len(m) > 0 and verbose:
37
+ print("missing keys:")
38
+ print(m)
39
+ if len(u) > 0 and verbose:
40
+ print("unexpected keys:")
41
+ print(u)
42
+
43
+ model.cuda()
44
+ model.eval()
45
+ return model
46
+
47
+
48
+ def load_img(path):
49
+ image = Image.open(path).convert("RGB")
50
+ w, h = image.size
51
+ print(f"loaded input image of size ({w}, {h}) from {path}")
52
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
53
+ image = image.resize((w, h), resample=PIL.Image.LANCZOS)
54
+ image = np.array(image).astype(np.float32) / 255.0
55
+ image = image[None].transpose(0, 3, 1, 2)
56
+ image = torch.from_numpy(image)
57
+ return 2.*image - 1.
58
+
59
+
60
+ def main():
61
+ parser = argparse.ArgumentParser()
62
+
63
+ parser.add_argument(
64
+ "--prompt",
65
+ type=str,
66
+ nargs="?",
67
+ default="a painting of a virus monster playing guitar",
68
+ help="the prompt to render"
69
+ )
70
+
71
+ parser.add_argument(
72
+ "--init-img",
73
+ type=str,
74
+ nargs="?",
75
+ help="path to the input image"
76
+ )
77
+
78
+ parser.add_argument(
79
+ "--outdir",
80
+ type=str,
81
+ nargs="?",
82
+ help="dir to write results to",
83
+ default="outputs/img2img-samples"
84
+ )
85
+
86
+ parser.add_argument(
87
+ "--skip_grid",
88
+ action='store_true',
89
+ help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
90
+ )
91
+
92
+ parser.add_argument(
93
+ "--skip_save",
94
+ action='store_true',
95
+ help="do not save indiviual samples. For speed measurements.",
96
+ )
97
+
98
+ parser.add_argument(
99
+ "--ddim_steps",
100
+ type=int,
101
+ default=50,
102
+ help="number of ddim sampling steps",
103
+ )
104
+
105
+ parser.add_argument(
106
+ "--plms",
107
+ action='store_true',
108
+ help="use plms sampling",
109
+ )
110
+ parser.add_argument(
111
+ "--fixed_code",
112
+ action='store_true',
113
+ help="if enabled, uses the same starting code across all samples ",
114
+ )
115
+
116
+ parser.add_argument(
117
+ "--ddim_eta",
118
+ type=float,
119
+ default=0.0,
120
+ help="ddim eta (eta=0.0 corresponds to deterministic sampling",
121
+ )
122
+ parser.add_argument(
123
+ "--n_iter",
124
+ type=int,
125
+ default=1,
126
+ help="sample this often",
127
+ )
128
+ parser.add_argument(
129
+ "--C",
130
+ type=int,
131
+ default=4,
132
+ help="latent channels",
133
+ )
134
+ parser.add_argument(
135
+ "--f",
136
+ type=int,
137
+ default=8,
138
+ help="downsampling factor, most often 8 or 16",
139
+ )
140
+ parser.add_argument(
141
+ "--n_samples",
142
+ type=int,
143
+ default=2,
144
+ help="how many samples to produce for each given prompt. A.k.a batch size",
145
+ )
146
+ parser.add_argument(
147
+ "--n_rows",
148
+ type=int,
149
+ default=0,
150
+ help="rows in the grid (default: n_samples)",
151
+ )
152
+ parser.add_argument(
153
+ "--scale",
154
+ type=float,
155
+ default=5.0,
156
+ help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
157
+ )
158
+
159
+ parser.add_argument(
160
+ "--strength",
161
+ type=float,
162
+ default=0.75,
163
+ help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
164
+ )
165
+ parser.add_argument(
166
+ "--from-file",
167
+ type=str,
168
+ help="if specified, load prompts from this file",
169
+ )
170
+ parser.add_argument(
171
+ "--config",
172
+ type=str,
173
+ default="configs/stable-diffusion/v1-inference.yaml",
174
+ help="path to config which constructs model",
175
+ )
176
+ parser.add_argument(
177
+ "--ckpt",
178
+ type=str,
179
+ default="models/ldm/stable-diffusion-v1/model.ckpt",
180
+ help="path to checkpoint of model",
181
+ )
182
+ parser.add_argument(
183
+ "--seed",
184
+ type=int,
185
+ default=42,
186
+ help="the seed (for reproducible sampling)",
187
+ )
188
+ parser.add_argument(
189
+ "--precision",
190
+ type=str,
191
+ help="evaluate at this precision",
192
+ choices=["full", "autocast"],
193
+ default="autocast"
194
+ )
195
+
196
+ opt = parser.parse_args()
197
+ seed_everything(opt.seed)
198
+
199
+ config = OmegaConf.load(f"{opt.config}")
200
+ model = load_model_from_config(config, f"{opt.ckpt}")
201
+
202
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
203
+ model = model.to(device)
204
+
205
+ if opt.plms:
206
+ raise NotImplementedError("PLMS sampler not (yet) supported")
207
+ sampler = PLMSSampler(model)
208
+ else:
209
+ sampler = DDIMSampler(model)
210
+
211
+ os.makedirs(opt.outdir, exist_ok=True)
212
+ outpath = opt.outdir
213
+
214
+ batch_size = opt.n_samples
215
+ n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
216
+ if not opt.from_file:
217
+ prompt = opt.prompt
218
+ assert prompt is not None
219
+ data = [batch_size * [prompt]]
220
+
221
+ else:
222
+ print(f"reading prompts from {opt.from_file}")
223
+ with open(opt.from_file, "r") as f:
224
+ data = f.read().splitlines()
225
+ data = list(chunk(data, batch_size))
226
+
227
+ sample_path = os.path.join(outpath, "samples")
228
+ os.makedirs(sample_path, exist_ok=True)
229
+ base_count = len(os.listdir(sample_path))
230
+ grid_count = len(os.listdir(outpath)) - 1
231
+
232
+ assert os.path.isfile(opt.init_img)
233
+ init_image = load_img(opt.init_img).to(device)
234
+ init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
235
+ init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
236
+
237
+ sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
238
+
239
+ assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]'
240
+ t_enc = int(opt.strength * opt.ddim_steps)
241
+ print(f"target t_enc is {t_enc} steps")
242
+
243
+ precision_scope = autocast if opt.precision == "autocast" else nullcontext
244
+ with torch.no_grad():
245
+ with precision_scope("cuda"):
246
+ with model.ema_scope():
247
+ tic = time.time()
248
+ all_samples = list()
249
+ for n in trange(opt.n_iter, desc="Sampling"):
250
+ for prompts in tqdm(data, desc="data"):
251
+ uc = None
252
+ if opt.scale != 1.0:
253
+ uc = model.get_learned_conditioning(batch_size * [""])
254
+ if isinstance(prompts, tuple):
255
+ prompts = list(prompts)
256
+ c = model.get_learned_conditioning(prompts)
257
+
258
+ # encode (scaled latent)
259
+ z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(device))
260
+ # decode it
261
+ samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,
262
+ unconditional_conditioning=uc,)
263
+
264
+ x_samples = model.decode_first_stage(samples)
265
+ x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
266
+
267
+ if not opt.skip_save:
268
+ for x_sample in x_samples:
269
+ x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
270
+ Image.fromarray(x_sample.astype(np.uint8)).save(
271
+ os.path.join(sample_path, f"{base_count:05}.png"))
272
+ base_count += 1
273
+ all_samples.append(x_samples)
274
+
275
+ if not opt.skip_grid:
276
+ # additionally, save as grid
277
+ grid = torch.stack(all_samples, 0)
278
+ grid = rearrange(grid, 'n b c h w -> (n b) c h w')
279
+ grid = make_grid(grid, nrow=n_rows)
280
+
281
+ # to image
282
+ grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
283
+ Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
284
+ grid_count += 1
285
+
286
+ toc = time.time()
287
+
288
+ print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
289
+ f" \nEnjoy.")
290
+
291
+
292
+ if __name__ == "__main__":
293
+ main()
stable-diffusion/scripts/inpaint.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse, os, sys, glob
2
+ from omegaconf import OmegaConf
3
+ from PIL import Image
4
+ from tqdm import tqdm
5
+ import numpy as np
6
+ import torch
7
+ from main import instantiate_from_config
8
+ from ldm.models.diffusion.ddim import DDIMSampler
9
+
10
+
11
+ def make_batch(image, mask, device):
12
+ image = np.array(Image.open(image).convert("RGB"))
13
+ image = image.astype(np.float32)/255.0
14
+ image = image[None].transpose(0,3,1,2)
15
+ image = torch.from_numpy(image)
16
+
17
+ mask = np.array(Image.open(mask).convert("L"))
18
+ mask = mask.astype(np.float32)/255.0
19
+ mask = mask[None,None]
20
+ mask[mask < 0.5] = 0
21
+ mask[mask >= 0.5] = 1
22
+ mask = torch.from_numpy(mask)
23
+
24
+ masked_image = (1-mask)*image
25
+
26
+ batch = {"image": image, "mask": mask, "masked_image": masked_image}
27
+ for k in batch:
28
+ batch[k] = batch[k].to(device=device)
29
+ batch[k] = batch[k]*2.0-1.0
30
+ return batch
31
+
32
+
33
+ if __name__ == "__main__":
34
+ parser = argparse.ArgumentParser()
35
+ parser.add_argument(
36
+ "--indir",
37
+ type=str,
38
+ nargs="?",
39
+ help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",
40
+ )
41
+ parser.add_argument(
42
+ "--outdir",
43
+ type=str,
44
+ nargs="?",
45
+ help="dir to write results to",
46
+ )
47
+ parser.add_argument(
48
+ "--steps",
49
+ type=int,
50
+ default=50,
51
+ help="number of ddim sampling steps",
52
+ )
53
+ opt = parser.parse_args()
54
+
55
+ masks = sorted(glob.glob(os.path.join(opt.indir, "*_mask.png")))
56
+ images = [x.replace("_mask.png", ".png") for x in masks]
57
+ print(f"Found {len(masks)} inputs.")
58
+
59
+ config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
60
+ model = instantiate_from_config(config.model)
61
+ model.load_state_dict(torch.load("models/ldm/inpainting_big/last.ckpt")["state_dict"],
62
+ strict=False)
63
+
64
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
65
+ model = model.to(device)
66
+ sampler = DDIMSampler(model)
67
+
68
+ os.makedirs(opt.outdir, exist_ok=True)
69
+ with torch.no_grad():
70
+ with model.ema_scope():
71
+ for image, mask in tqdm(zip(images, masks)):
72
+ outpath = os.path.join(opt.outdir, os.path.split(image)[1])
73
+ batch = make_batch(image, mask, device=device)
74
+
75
+ # encode masked image and concat downsampled mask
76
+ c = model.cond_stage_model.encode(batch["masked_image"])
77
+ cc = torch.nn.functional.interpolate(batch["mask"],
78
+ size=c.shape[-2:])
79
+ c = torch.cat((c, cc), dim=1)
80
+
81
+ shape = (c.shape[1]-1,)+c.shape[2:]
82
+ samples_ddim, _ = sampler.sample(S=opt.steps,
83
+ conditioning=c,
84
+ batch_size=c.shape[0],
85
+ shape=shape,
86
+ verbose=False)
87
+ x_samples_ddim = model.decode_first_stage(samples_ddim)
88
+
89
+ image = torch.clamp((batch["image"]+1.0)/2.0,
90
+ min=0.0, max=1.0)
91
+ mask = torch.clamp((batch["mask"]+1.0)/2.0,
92
+ min=0.0, max=1.0)
93
+ predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
94
+ min=0.0, max=1.0)
95
+
96
+ inpainted = (1-mask)*image+mask*predicted_image
97
+ inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
98
+ Image.fromarray(inpainted.astype(np.uint8)).save(outpath)
stable-diffusion/scripts/knn2img.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse, os, sys, glob
2
+ import clip
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from omegaconf import OmegaConf
7
+ from PIL import Image
8
+ from tqdm import tqdm, trange
9
+ from itertools import islice
10
+ from einops import rearrange, repeat
11
+ from torchvision.utils import make_grid
12
+ import scann
13
+ import time
14
+ from multiprocessing import cpu_count
15
+
16
+ from ldm.util import instantiate_from_config, parallel_data_prefetch
17
+ from ldm.models.diffusion.ddim import DDIMSampler
18
+ from ldm.models.diffusion.plms import PLMSSampler
19
+ from ldm.modules.encoders.modules import FrozenClipImageEmbedder, FrozenCLIPTextEmbedder
20
+
21
+ DATABASES = [
22
+ "openimages",
23
+ "artbench-art_nouveau",
24
+ "artbench-baroque",
25
+ "artbench-expressionism",
26
+ "artbench-impressionism",
27
+ "artbench-post_impressionism",
28
+ "artbench-realism",
29
+ "artbench-romanticism",
30
+ "artbench-renaissance",
31
+ "artbench-surrealism",
32
+ "artbench-ukiyo_e",
33
+ ]
34
+
35
+
36
+ def chunk(it, size):
37
+ it = iter(it)
38
+ return iter(lambda: tuple(islice(it, size)), ())
39
+
40
+
41
+ def load_model_from_config(config, ckpt, verbose=False):
42
+ print(f"Loading model from {ckpt}")
43
+ pl_sd = torch.load(ckpt, map_location="cpu")
44
+ if "global_step" in pl_sd:
45
+ print(f"Global Step: {pl_sd['global_step']}")
46
+ sd = pl_sd["state_dict"]
47
+ model = instantiate_from_config(config.model)
48
+ m, u = model.load_state_dict(sd, strict=False)
49
+ if len(m) > 0 and verbose:
50
+ print("missing keys:")
51
+ print(m)
52
+ if len(u) > 0 and verbose:
53
+ print("unexpected keys:")
54
+ print(u)
55
+
56
+ model.cuda()
57
+ model.eval()
58
+ return model
59
+
60
+
61
+ class Searcher(object):
62
+ def __init__(self, database, retriever_version='ViT-L/14'):
63
+ assert database in DATABASES
64
+ # self.database = self.load_database(database)
65
+ self.database_name = database
66
+ self.searcher_savedir = f'data/rdm/searchers/{self.database_name}'
67
+ self.database_path = f'data/rdm/retrieval_databases/{self.database_name}'
68
+ self.retriever = self.load_retriever(version=retriever_version)
69
+ self.database = {'embedding': [],
70
+ 'img_id': [],
71
+ 'patch_coords': []}
72
+ self.load_database()
73
+ self.load_searcher()
74
+
75
+ def train_searcher(self, k,
76
+ metric='dot_product',
77
+ searcher_savedir=None):
78
+
79
+ print('Start training searcher')
80
+ searcher = scann.scann_ops_pybind.builder(self.database['embedding'] /
81
+ np.linalg.norm(self.database['embedding'], axis=1)[:, np.newaxis],
82
+ k, metric)
83
+ self.searcher = searcher.score_brute_force().build()
84
+ print('Finish training searcher')
85
+
86
+ if searcher_savedir is not None:
87
+ print(f'Save trained searcher under "{searcher_savedir}"')
88
+ os.makedirs(searcher_savedir, exist_ok=True)
89
+ self.searcher.serialize(searcher_savedir)
90
+
91
+ def load_single_file(self, saved_embeddings):
92
+ compressed = np.load(saved_embeddings)
93
+ self.database = {key: compressed[key] for key in compressed.files}
94
+ print('Finished loading of clip embeddings.')
95
+
96
+ def load_multi_files(self, data_archive):
97
+ out_data = {key: [] for key in self.database}
98
+ for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'):
99
+ for key in d.files:
100
+ out_data[key].append(d[key])
101
+
102
+ return out_data
103
+
104
+ def load_database(self):
105
+
106
+ print(f'Load saved patch embedding from "{self.database_path}"')
107
+ file_content = glob.glob(os.path.join(self.database_path, '*.npz'))
108
+
109
+ if len(file_content) == 1:
110
+ self.load_single_file(file_content[0])
111
+ elif len(file_content) > 1:
112
+ data = [np.load(f) for f in file_content]
113
+ prefetched_data = parallel_data_prefetch(self.load_multi_files, data,
114
+ n_proc=min(len(data), cpu_count()), target_data_type='dict')
115
+
116
+ self.database = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in
117
+ self.database}
118
+ else:
119
+ raise ValueError(f'No npz-files in specified path "{self.database_path}" is this directory existing?')
120
+
121
+ print(f'Finished loading of retrieval database of length {self.database["embedding"].shape[0]}.')
122
+
123
+ def load_retriever(self, version='ViT-L/14', ):
124
+ model = FrozenClipImageEmbedder(model=version)
125
+ if torch.cuda.is_available():
126
+ model.cuda()
127
+ model.eval()
128
+ return model
129
+
130
+ def load_searcher(self):
131
+ print(f'load searcher for database {self.database_name} from {self.searcher_savedir}')
132
+ self.searcher = scann.scann_ops_pybind.load_searcher(self.searcher_savedir)
133
+ print('Finished loading searcher.')
134
+
135
+ def search(self, x, k):
136
+ if self.searcher is None and self.database['embedding'].shape[0] < 2e4:
137
+ self.train_searcher(k) # quickly fit searcher on the fly for small databases
138
+ assert self.searcher is not None, 'Cannot search with uninitialized searcher'
139
+ if isinstance(x, torch.Tensor):
140
+ x = x.detach().cpu().numpy()
141
+ if len(x.shape) == 3:
142
+ x = x[:, 0]
143
+ query_embeddings = x / np.linalg.norm(x, axis=1)[:, np.newaxis]
144
+
145
+ start = time.time()
146
+ nns, distances = self.searcher.search_batched(query_embeddings, final_num_neighbors=k)
147
+ end = time.time()
148
+
149
+ out_embeddings = self.database['embedding'][nns]
150
+ out_img_ids = self.database['img_id'][nns]
151
+ out_pc = self.database['patch_coords'][nns]
152
+
153
+ out = {'nn_embeddings': out_embeddings / np.linalg.norm(out_embeddings, axis=-1)[..., np.newaxis],
154
+ 'img_ids': out_img_ids,
155
+ 'patch_coords': out_pc,
156
+ 'queries': x,
157
+ 'exec_time': end - start,
158
+ 'nns': nns,
159
+ 'q_embeddings': query_embeddings}
160
+
161
+ return out
162
+
163
+ def __call__(self, x, n):
164
+ return self.search(x, n)
165
+
166
+
167
+ if __name__ == "__main__":
168
+ parser = argparse.ArgumentParser()
169
+ # TODO: add n_neighbors and modes (text-only, text-image-retrieval, image-image retrieval etc)
170
+ # TODO: add 'image variation' mode when knn=0 but a single image is given instead of a text prompt?
171
+ parser.add_argument(
172
+ "--prompt",
173
+ type=str,
174
+ nargs="?",
175
+ default="a painting of a virus monster playing guitar",
176
+ help="the prompt to render"
177
+ )
178
+
179
+ parser.add_argument(
180
+ "--outdir",
181
+ type=str,
182
+ nargs="?",
183
+ help="dir to write results to",
184
+ default="outputs/txt2img-samples"
185
+ )
186
+
187
+ parser.add_argument(
188
+ "--skip_grid",
189
+ action='store_true',
190
+ help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
191
+ )
192
+
193
+ parser.add_argument(
194
+ "--ddim_steps",
195
+ type=int,
196
+ default=50,
197
+ help="number of ddim sampling steps",
198
+ )
199
+
200
+ parser.add_argument(
201
+ "--n_repeat",
202
+ type=int,
203
+ default=1,
204
+ help="number of repeats in CLIP latent space",
205
+ )
206
+
207
+ parser.add_argument(
208
+ "--plms",
209
+ action='store_true',
210
+ help="use plms sampling",
211
+ )
212
+
213
+ parser.add_argument(
214
+ "--ddim_eta",
215
+ type=float,
216
+ default=0.0,
217
+ help="ddim eta (eta=0.0 corresponds to deterministic sampling",
218
+ )
219
+ parser.add_argument(
220
+ "--n_iter",
221
+ type=int,
222
+ default=1,
223
+ help="sample this often",
224
+ )
225
+
226
+ parser.add_argument(
227
+ "--H",
228
+ type=int,
229
+ default=768,
230
+ help="image height, in pixel space",
231
+ )
232
+
233
+ parser.add_argument(
234
+ "--W",
235
+ type=int,
236
+ default=768,
237
+ help="image width, in pixel space",
238
+ )
239
+
240
+ parser.add_argument(
241
+ "--n_samples",
242
+ type=int,
243
+ default=3,
244
+ help="how many samples to produce for each given prompt. A.k.a batch size",
245
+ )
246
+
247
+ parser.add_argument(
248
+ "--n_rows",
249
+ type=int,
250
+ default=0,
251
+ help="rows in the grid (default: n_samples)",
252
+ )
253
+
254
+ parser.add_argument(
255
+ "--scale",
256
+ type=float,
257
+ default=5.0,
258
+ help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
259
+ )
260
+
261
+ parser.add_argument(
262
+ "--from-file",
263
+ type=str,
264
+ help="if specified, load prompts from this file",
265
+ )
266
+
267
+ parser.add_argument(
268
+ "--config",
269
+ type=str,
270
+ default="configs/retrieval-augmented-diffusion/768x768.yaml",
271
+ help="path to config which constructs model",
272
+ )
273
+
274
+ parser.add_argument(
275
+ "--ckpt",
276
+ type=str,
277
+ default="models/rdm/rdm768x768/model.ckpt",
278
+ help="path to checkpoint of model",
279
+ )
280
+
281
+ parser.add_argument(
282
+ "--clip_type",
283
+ type=str,
284
+ default="ViT-L/14",
285
+ help="which CLIP model to use for retrieval and NN encoding",
286
+ )
287
+ parser.add_argument(
288
+ "--database",
289
+ type=str,
290
+ default='artbench-surrealism',
291
+ choices=DATABASES,
292
+ help="The database used for the search, only applied when --use_neighbors=True",
293
+ )
294
+ parser.add_argument(
295
+ "--use_neighbors",
296
+ default=False,
297
+ action='store_true',
298
+ help="Include neighbors in addition to text prompt for conditioning",
299
+ )
300
+ parser.add_argument(
301
+ "--knn",
302
+ default=10,
303
+ type=int,
304
+ help="The number of included neighbors, only applied when --use_neighbors=True",
305
+ )
306
+
307
+ opt = parser.parse_args()
308
+
309
+ config = OmegaConf.load(f"{opt.config}")
310
+ model = load_model_from_config(config, f"{opt.ckpt}")
311
+
312
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
313
+ model = model.to(device)
314
+
315
+ clip_text_encoder = FrozenCLIPTextEmbedder(opt.clip_type).to(device)
316
+
317
+ if opt.plms:
318
+ sampler = PLMSSampler(model)
319
+ else:
320
+ sampler = DDIMSampler(model)
321
+
322
+ os.makedirs(opt.outdir, exist_ok=True)
323
+ outpath = opt.outdir
324
+
325
+ batch_size = opt.n_samples
326
+ n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
327
+ if not opt.from_file:
328
+ prompt = opt.prompt
329
+ assert prompt is not None
330
+ data = [batch_size * [prompt]]
331
+
332
+ else:
333
+ print(f"reading prompts from {opt.from_file}")
334
+ with open(opt.from_file, "r") as f:
335
+ data = f.read().splitlines()
336
+ data = list(chunk(data, batch_size))
337
+
338
+ sample_path = os.path.join(outpath, "samples")
339
+ os.makedirs(sample_path, exist_ok=True)
340
+ base_count = len(os.listdir(sample_path))
341
+ grid_count = len(os.listdir(outpath)) - 1
342
+
343
+ print(f"sampling scale for cfg is {opt.scale:.2f}")
344
+
345
+ searcher = None
346
+ if opt.use_neighbors:
347
+ searcher = Searcher(opt.database)
348
+
349
+ with torch.no_grad():
350
+ with model.ema_scope():
351
+ for n in trange(opt.n_iter, desc="Sampling"):
352
+ all_samples = list()
353
+ for prompts in tqdm(data, desc="data"):
354
+ print("sampling prompts:", prompts)
355
+ if isinstance(prompts, tuple):
356
+ prompts = list(prompts)
357
+ c = clip_text_encoder.encode(prompts)
358
+ uc = None
359
+ if searcher is not None:
360
+ nn_dict = searcher(c, opt.knn)
361
+ c = torch.cat([c, torch.from_numpy(nn_dict['nn_embeddings']).cuda()], dim=1)
362
+ if opt.scale != 1.0:
363
+ uc = torch.zeros_like(c)
364
+ if isinstance(prompts, tuple):
365
+ prompts = list(prompts)
366
+ shape = [16, opt.H // 16, opt.W // 16] # note: currently hardcoded for f16 model
367
+ samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
368
+ conditioning=c,
369
+ batch_size=c.shape[0],
370
+ shape=shape,
371
+ verbose=False,
372
+ unconditional_guidance_scale=opt.scale,
373
+ unconditional_conditioning=uc,
374
+ eta=opt.ddim_eta,
375
+ )
376
+
377
+ x_samples_ddim = model.decode_first_stage(samples_ddim)
378
+ x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
379
+
380
+ for x_sample in x_samples_ddim:
381
+ x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
382
+ Image.fromarray(x_sample.astype(np.uint8)).save(
383
+ os.path.join(sample_path, f"{base_count:05}.png"))
384
+ base_count += 1
385
+ all_samples.append(x_samples_ddim)
386
+
387
+ if not opt.skip_grid:
388
+ # additionally, save as grid
389
+ grid = torch.stack(all_samples, 0)
390
+ grid = rearrange(grid, 'n b c h w -> (n b) c h w')
391
+ grid = make_grid(grid, nrow=n_rows)
392
+
393
+ # to image
394
+ grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
395
+ Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
396
+ grid_count += 1
397
+
398
+ print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
stable-diffusion/scripts/latent_imagenet_diffusion.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
stable-diffusion/scripts/sample_diffusion.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse, os, sys, glob, datetime, yaml
2
+ import torch
3
+ import time
4
+ import numpy as np
5
+ from tqdm import trange
6
+
7
+ from omegaconf import OmegaConf
8
+ from PIL import Image
9
+
10
+ from ldm.models.diffusion.ddim import DDIMSampler
11
+ from ldm.util import instantiate_from_config
12
+
13
+ rescale = lambda x: (x + 1.) / 2.
14
+
15
+ def custom_to_pil(x):
16
+ x = x.detach().cpu()
17
+ x = torch.clamp(x, -1., 1.)
18
+ x = (x + 1.) / 2.
19
+ x = x.permute(1, 2, 0).numpy()
20
+ x = (255 * x).astype(np.uint8)
21
+ x = Image.fromarray(x)
22
+ if not x.mode == "RGB":
23
+ x = x.convert("RGB")
24
+ return x
25
+
26
+
27
+ def custom_to_np(x):
28
+ # saves the batch in adm style as in https://github.com/openai/guided-diffusion/blob/main/scripts/image_sample.py
29
+ sample = x.detach().cpu()
30
+ sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)
31
+ sample = sample.permute(0, 2, 3, 1)
32
+ sample = sample.contiguous()
33
+ return sample
34
+
35
+
36
+ def logs2pil(logs, keys=["sample"]):
37
+ imgs = dict()
38
+ for k in logs:
39
+ try:
40
+ if len(logs[k].shape) == 4:
41
+ img = custom_to_pil(logs[k][0, ...])
42
+ elif len(logs[k].shape) == 3:
43
+ img = custom_to_pil(logs[k])
44
+ else:
45
+ print(f"Unknown format for key {k}. ")
46
+ img = None
47
+ except:
48
+ img = None
49
+ imgs[k] = img
50
+ return imgs
51
+
52
+
53
+ @torch.no_grad()
54
+ def convsample(model, shape, return_intermediates=True,
55
+ verbose=True,
56
+ make_prog_row=False):
57
+
58
+
59
+ if not make_prog_row:
60
+ return model.p_sample_loop(None, shape,
61
+ return_intermediates=return_intermediates, verbose=verbose)
62
+ else:
63
+ return model.progressive_denoising(
64
+ None, shape, verbose=True
65
+ )
66
+
67
+
68
+ @torch.no_grad()
69
+ def convsample_ddim(model, steps, shape, eta=1.0
70
+ ):
71
+ ddim = DDIMSampler(model)
72
+ bs = shape[0]
73
+ shape = shape[1:]
74
+ samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, eta=eta, verbose=False,)
75
+ return samples, intermediates
76
+
77
+
78
+ @torch.no_grad()
79
+ def make_convolutional_sample(model, batch_size, vanilla=False, custom_steps=None, eta=1.0,):
80
+
81
+
82
+ log = dict()
83
+
84
+ shape = [batch_size,
85
+ model.model.diffusion_model.in_channels,
86
+ model.model.diffusion_model.image_size,
87
+ model.model.diffusion_model.image_size]
88
+
89
+ with model.ema_scope("Plotting"):
90
+ t0 = time.time()
91
+ if vanilla:
92
+ sample, progrow = convsample(model, shape,
93
+ make_prog_row=True)
94
+ else:
95
+ sample, intermediates = convsample_ddim(model, steps=custom_steps, shape=shape,
96
+ eta=eta)
97
+
98
+ t1 = time.time()
99
+
100
+ x_sample = model.decode_first_stage(sample)
101
+
102
+ log["sample"] = x_sample
103
+ log["time"] = t1 - t0
104
+ log['throughput'] = sample.shape[0] / (t1 - t0)
105
+ print(f'Throughput for this batch: {log["throughput"]}')
106
+ return log
107
+
108
+ def run(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None, n_samples=50000, nplog=None):
109
+ if vanilla:
110
+ print(f'Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.')
111
+ else:
112
+ print(f'Using DDIM sampling with {custom_steps} sampling steps and eta={eta}')
113
+
114
+
115
+ tstart = time.time()
116
+ n_saved = len(glob.glob(os.path.join(logdir,'*.png')))-1
117
+ # path = logdir
118
+ if model.cond_stage_model is None:
119
+ all_images = []
120
+
121
+ print(f"Running unconditional sampling for {n_samples} samples")
122
+ for _ in trange(n_samples // batch_size, desc="Sampling Batches (unconditional)"):
123
+ logs = make_convolutional_sample(model, batch_size=batch_size,
124
+ vanilla=vanilla, custom_steps=custom_steps,
125
+ eta=eta)
126
+ n_saved = save_logs(logs, logdir, n_saved=n_saved, key="sample")
127
+ all_images.extend([custom_to_np(logs["sample"])])
128
+ if n_saved >= n_samples:
129
+ print(f'Finish after generating {n_saved} samples')
130
+ break
131
+ all_img = np.concatenate(all_images, axis=0)
132
+ all_img = all_img[:n_samples]
133
+ shape_str = "x".join([str(x) for x in all_img.shape])
134
+ nppath = os.path.join(nplog, f"{shape_str}-samples.npz")
135
+ np.savez(nppath, all_img)
136
+
137
+ else:
138
+ raise NotImplementedError('Currently only sampling for unconditional models supported.')
139
+
140
+ print(f"sampling of {n_saved} images finished in {(time.time() - tstart) / 60.:.2f} minutes.")
141
+
142
+
143
+ def save_logs(logs, path, n_saved=0, key="sample", np_path=None):
144
+ for k in logs:
145
+ if k == key:
146
+ batch = logs[key]
147
+ if np_path is None:
148
+ for x in batch:
149
+ img = custom_to_pil(x)
150
+ imgpath = os.path.join(path, f"{key}_{n_saved:06}.png")
151
+ img.save(imgpath)
152
+ n_saved += 1
153
+ else:
154
+ npbatch = custom_to_np(batch)
155
+ shape_str = "x".join([str(x) for x in npbatch.shape])
156
+ nppath = os.path.join(np_path, f"{n_saved}-{shape_str}-samples.npz")
157
+ np.savez(nppath, npbatch)
158
+ n_saved += npbatch.shape[0]
159
+ return n_saved
160
+
161
+
162
+ def get_parser():
163
+ parser = argparse.ArgumentParser()
164
+ parser.add_argument(
165
+ "-r",
166
+ "--resume",
167
+ type=str,
168
+ nargs="?",
169
+ help="load from logdir or checkpoint in logdir",
170
+ )
171
+ parser.add_argument(
172
+ "-n",
173
+ "--n_samples",
174
+ type=int,
175
+ nargs="?",
176
+ help="number of samples to draw",
177
+ default=50000
178
+ )
179
+ parser.add_argument(
180
+ "-e",
181
+ "--eta",
182
+ type=float,
183
+ nargs="?",
184
+ help="eta for ddim sampling (0.0 yields deterministic sampling)",
185
+ default=1.0
186
+ )
187
+ parser.add_argument(
188
+ "-v",
189
+ "--vanilla_sample",
190
+ default=False,
191
+ action='store_true',
192
+ help="vanilla sampling (default option is DDIM sampling)?",
193
+ )
194
+ parser.add_argument(
195
+ "-l",
196
+ "--logdir",
197
+ type=str,
198
+ nargs="?",
199
+ help="extra logdir",
200
+ default="none"
201
+ )
202
+ parser.add_argument(
203
+ "-c",
204
+ "--custom_steps",
205
+ type=int,
206
+ nargs="?",
207
+ help="number of steps for ddim and fastdpm sampling",
208
+ default=50
209
+ )
210
+ parser.add_argument(
211
+ "--batch_size",
212
+ type=int,
213
+ nargs="?",
214
+ help="the bs",
215
+ default=10
216
+ )
217
+ return parser
218
+
219
+
220
+ def load_model_from_config(config, sd):
221
+ model = instantiate_from_config(config)
222
+ model.load_state_dict(sd,strict=False)
223
+ model.cuda()
224
+ model.eval()
225
+ return model
226
+
227
+
228
+ def load_model(config, ckpt, gpu, eval_mode):
229
+ if ckpt:
230
+ print(f"Loading model from {ckpt}")
231
+ pl_sd = torch.load(ckpt, map_location="cpu")
232
+ global_step = pl_sd["global_step"]
233
+ else:
234
+ pl_sd = {"state_dict": None}
235
+ global_step = None
236
+ model = load_model_from_config(config.model,
237
+ pl_sd["state_dict"])
238
+
239
+ return model, global_step
240
+
241
+
242
+ if __name__ == "__main__":
243
+ now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
244
+ sys.path.append(os.getcwd())
245
+ command = " ".join(sys.argv)
246
+
247
+ parser = get_parser()
248
+ opt, unknown = parser.parse_known_args()
249
+ ckpt = None
250
+
251
+ if not os.path.exists(opt.resume):
252
+ raise ValueError("Cannot find {}".format(opt.resume))
253
+ if os.path.isfile(opt.resume):
254
+ # paths = opt.resume.split("/")
255
+ try:
256
+ logdir = '/'.join(opt.resume.split('/')[:-1])
257
+ # idx = len(paths)-paths[::-1].index("logs")+1
258
+ print(f'Logdir is {logdir}')
259
+ except ValueError:
260
+ paths = opt.resume.split("/")
261
+ idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
262
+ logdir = "/".join(paths[:idx])
263
+ ckpt = opt.resume
264
+ else:
265
+ assert os.path.isdir(opt.resume), f"{opt.resume} is not a directory"
266
+ logdir = opt.resume.rstrip("/")
267
+ ckpt = os.path.join(logdir, "model.ckpt")
268
+
269
+ base_configs = sorted(glob.glob(os.path.join(logdir, "config.yaml")))
270
+ opt.base = base_configs
271
+
272
+ configs = [OmegaConf.load(cfg) for cfg in opt.base]
273
+ cli = OmegaConf.from_dotlist(unknown)
274
+ config = OmegaConf.merge(*configs, cli)
275
+
276
+ gpu = True
277
+ eval_mode = True
278
+
279
+ if opt.logdir != "none":
280
+ locallog = logdir.split(os.sep)[-1]
281
+ if locallog == "": locallog = logdir.split(os.sep)[-2]
282
+ print(f"Switching logdir from '{logdir}' to '{os.path.join(opt.logdir, locallog)}'")
283
+ logdir = os.path.join(opt.logdir, locallog)
284
+
285
+ print(config)
286
+
287
+ model, global_step = load_model(config, ckpt, gpu, eval_mode)
288
+ print(f"global step: {global_step}")
289
+ print(75 * "=")
290
+ print("logging to:")
291
+ logdir = os.path.join(logdir, "samples", f"{global_step:08}", now)
292
+ imglogdir = os.path.join(logdir, "img")
293
+ numpylogdir = os.path.join(logdir, "numpy")
294
+
295
+ os.makedirs(imglogdir)
296
+ os.makedirs(numpylogdir)
297
+ print(logdir)
298
+ print(75 * "=")
299
+
300
+ # write config out
301
+ sampling_file = os.path.join(logdir, "sampling_config.yaml")
302
+ sampling_conf = vars(opt)
303
+
304
+ with open(sampling_file, 'w') as f:
305
+ yaml.dump(sampling_conf, f, default_flow_style=False)
306
+ print(sampling_conf)
307
+
308
+
309
+ run(model, imglogdir, eta=opt.eta,
310
+ vanilla=opt.vanilla_sample, n_samples=opt.n_samples, custom_steps=opt.custom_steps,
311
+ batch_size=opt.batch_size, nplog=numpylogdir)
312
+
313
+ print("done.")
stable-diffusion/scripts/tests/test_watermark.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import fire
3
+ from imwatermark import WatermarkDecoder
4
+
5
+
6
+ def testit(img_path):
7
+ bgr = cv2.imread(img_path)
8
+ decoder = WatermarkDecoder('bytes', 136)
9
+ watermark = decoder.decode(bgr, 'dwtDct')
10
+ try:
11
+ dec = watermark.decode('utf-8')
12
+ except:
13
+ dec = "null"
14
+ print(dec)
15
+
16
+
17
+ if __name__ == "__main__":
18
+ fire.Fire(testit)
stable-diffusion/scripts/train_searcher.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, sys
2
+ import numpy as np
3
+ import scann
4
+ import argparse
5
+ import glob
6
+ from multiprocessing import cpu_count
7
+ from tqdm import tqdm
8
+
9
+ from ldm.util import parallel_data_prefetch
10
+
11
+
12
+ def search_bruteforce(searcher):
13
+ return searcher.score_brute_force().build()
14
+
15
+
16
+ def search_partioned_ah(searcher, dims_per_block, aiq_threshold, reorder_k,
17
+ partioning_trainsize, num_leaves, num_leaves_to_search):
18
+ return searcher.tree(num_leaves=num_leaves,
19
+ num_leaves_to_search=num_leaves_to_search,
20
+ training_sample_size=partioning_trainsize). \
21
+ score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(reorder_k).build()
22
+
23
+
24
+ def search_ah(searcher, dims_per_block, aiq_threshold, reorder_k):
25
+ return searcher.score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(
26
+ reorder_k).build()
27
+
28
+ def load_datapool(dpath):
29
+
30
+
31
+ def load_single_file(saved_embeddings):
32
+ compressed = np.load(saved_embeddings)
33
+ database = {key: compressed[key] for key in compressed.files}
34
+ return database
35
+
36
+ def load_multi_files(data_archive):
37
+ database = {key: [] for key in data_archive[0].files}
38
+ for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'):
39
+ for key in d.files:
40
+ database[key].append(d[key])
41
+
42
+ return database
43
+
44
+ print(f'Load saved patch embedding from "{dpath}"')
45
+ file_content = glob.glob(os.path.join(dpath, '*.npz'))
46
+
47
+ if len(file_content) == 1:
48
+ data_pool = load_single_file(file_content[0])
49
+ elif len(file_content) > 1:
50
+ data = [np.load(f) for f in file_content]
51
+ prefetched_data = parallel_data_prefetch(load_multi_files, data,
52
+ n_proc=min(len(data), cpu_count()), target_data_type='dict')
53
+
54
+ data_pool = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in prefetched_data[0].keys()}
55
+ else:
56
+ raise ValueError(f'No npz-files in specified path "{dpath}" is this directory existing?')
57
+
58
+ print(f'Finished loading of retrieval database of length {data_pool["embedding"].shape[0]}.')
59
+ return data_pool
60
+
61
+
62
+ def train_searcher(opt,
63
+ metric='dot_product',
64
+ partioning_trainsize=None,
65
+ reorder_k=None,
66
+ # todo tune
67
+ aiq_thld=0.2,
68
+ dims_per_block=2,
69
+ num_leaves=None,
70
+ num_leaves_to_search=None,):
71
+
72
+ data_pool = load_datapool(opt.database)
73
+ k = opt.knn
74
+
75
+ if not reorder_k:
76
+ reorder_k = 2 * k
77
+
78
+ # normalize
79
+ # embeddings =
80
+ searcher = scann.scann_ops_pybind.builder(data_pool['embedding'] / np.linalg.norm(data_pool['embedding'], axis=1)[:, np.newaxis], k, metric)
81
+ pool_size = data_pool['embedding'].shape[0]
82
+
83
+ print(*(['#'] * 100))
84
+ print('Initializing scaNN searcher with the following values:')
85
+ print(f'k: {k}')
86
+ print(f'metric: {metric}')
87
+ print(f'reorder_k: {reorder_k}')
88
+ print(f'anisotropic_quantization_threshold: {aiq_thld}')
89
+ print(f'dims_per_block: {dims_per_block}')
90
+ print(*(['#'] * 100))
91
+ print('Start training searcher....')
92
+ print(f'N samples in pool is {pool_size}')
93
+
94
+ # this reflects the recommended design choices proposed at
95
+ # https://github.com/google-research/google-research/blob/aca5f2e44e301af172590bb8e65711f0c9ee0cfd/scann/docs/algorithms.md
96
+ if pool_size < 2e4:
97
+ print('Using brute force search.')
98
+ searcher = search_bruteforce(searcher)
99
+ elif 2e4 <= pool_size and pool_size < 1e5:
100
+ print('Using asymmetric hashing search and reordering.')
101
+ searcher = search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
102
+ else:
103
+ print('Using using partioning, asymmetric hashing search and reordering.')
104
+
105
+ if not partioning_trainsize:
106
+ partioning_trainsize = data_pool['embedding'].shape[0] // 10
107
+ if not num_leaves:
108
+ num_leaves = int(np.sqrt(pool_size))
109
+
110
+ if not num_leaves_to_search:
111
+ num_leaves_to_search = max(num_leaves // 20, 1)
112
+
113
+ print('Partitioning params:')
114
+ print(f'num_leaves: {num_leaves}')
115
+ print(f'num_leaves_to_search: {num_leaves_to_search}')
116
+ # self.searcher = self.search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
117
+ searcher = search_partioned_ah(searcher, dims_per_block, aiq_thld, reorder_k,
118
+ partioning_trainsize, num_leaves, num_leaves_to_search)
119
+
120
+ print('Finish training searcher')
121
+ searcher_savedir = opt.target_path
122
+ os.makedirs(searcher_savedir, exist_ok=True)
123
+ searcher.serialize(searcher_savedir)
124
+ print(f'Saved trained searcher under "{searcher_savedir}"')
125
+
126
+ if __name__ == '__main__':
127
+ sys.path.append(os.getcwd())
128
+ parser = argparse.ArgumentParser()
129
+ parser.add_argument('--database',
130
+ '-d',
131
+ default='data/rdm/retrieval_databases/openimages',
132
+ type=str,
133
+ help='path to folder containing the clip feature of the database')
134
+ parser.add_argument('--target_path',
135
+ '-t',
136
+ default='data/rdm/searchers/openimages',
137
+ type=str,
138
+ help='path to the target folder where the searcher shall be stored.')
139
+ parser.add_argument('--knn',
140
+ '-k',
141
+ default=20,
142
+ type=int,
143
+ help='number of nearest neighbors, for which the searcher shall be optimized')
144
+
145
+ opt, _ = parser.parse_known_args()
146
+
147
+ train_searcher(opt,)
stable-diffusion/scripts/txt2img.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse, os, sys, glob
2
+ import cv2
3
+ import torch
4
+ import numpy as np
5
+ from omegaconf import OmegaConf
6
+ from PIL import Image
7
+ from tqdm import tqdm, trange
8
+ from imwatermark import WatermarkEncoder
9
+ from itertools import islice
10
+ from einops import rearrange
11
+ from torchvision.utils import make_grid
12
+ import time
13
+ from pytorch_lightning import seed_everything
14
+ from torch import autocast
15
+ from contextlib import contextmanager, nullcontext
16
+
17
+ from ldm.util import instantiate_from_config
18
+ from ldm.models.diffusion.ddim import DDIMSampler
19
+ from ldm.models.diffusion.plms import PLMSSampler
20
+ from ldm.models.diffusion.dpm_solver import DPMSolverSampler
21
+
22
+ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
23
+ from transformers import AutoFeatureExtractor
24
+
25
+
26
+ # load safety model
27
+ safety_model_id = "CompVis/stable-diffusion-safety-checker"
28
+ safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
29
+ safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
30
+
31
+
32
+ def chunk(it, size):
33
+ it = iter(it)
34
+ return iter(lambda: tuple(islice(it, size)), ())
35
+
36
+
37
+ def numpy_to_pil(images):
38
+ """
39
+ Convert a numpy image or a batch of images to a PIL image.
40
+ """
41
+ if images.ndim == 3:
42
+ images = images[None, ...]
43
+ images = (images * 255).round().astype("uint8")
44
+ pil_images = [Image.fromarray(image) for image in images]
45
+
46
+ return pil_images
47
+
48
+
49
+ def load_model_from_config(config, ckpt, verbose=False):
50
+ print(f"Loading model from {ckpt}")
51
+ pl_sd = torch.load(ckpt, map_location="cpu")
52
+ if "global_step" in pl_sd:
53
+ print(f"Global Step: {pl_sd['global_step']}")
54
+ sd = pl_sd["state_dict"]
55
+ model = instantiate_from_config(config.model)
56
+ m, u = model.load_state_dict(sd, strict=False)
57
+ if len(m) > 0 and verbose:
58
+ print("missing keys:")
59
+ print(m)
60
+ if len(u) > 0 and verbose:
61
+ print("unexpected keys:")
62
+ print(u)
63
+
64
+ model.cuda()
65
+ model.eval()
66
+ return model
67
+
68
+
69
+ def put_watermark(img, wm_encoder=None):
70
+ if wm_encoder is not None:
71
+ img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
72
+ img = wm_encoder.encode(img, 'dwtDct')
73
+ img = Image.fromarray(img[:, :, ::-1])
74
+ return img
75
+
76
+
77
+ def load_replacement(x):
78
+ try:
79
+ hwc = x.shape
80
+ y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
81
+ y = (np.array(y)/255.0).astype(x.dtype)
82
+ assert y.shape == x.shape
83
+ return y
84
+ except Exception:
85
+ return x
86
+
87
+
88
+ def check_safety(x_image):
89
+ safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
90
+ x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
91
+ assert x_checked_image.shape[0] == len(has_nsfw_concept)
92
+ for i in range(len(has_nsfw_concept)):
93
+ if has_nsfw_concept[i]:
94
+ x_checked_image[i] = load_replacement(x_checked_image[i])
95
+ return x_checked_image, has_nsfw_concept
96
+
97
+
98
+ def main():
99
+ parser = argparse.ArgumentParser()
100
+
101
+ parser.add_argument(
102
+ "--prompt",
103
+ type=str,
104
+ nargs="?",
105
+ default="a painting of a virus monster playing guitar",
106
+ help="the prompt to render"
107
+ )
108
+ parser.add_argument(
109
+ "--outdir",
110
+ type=str,
111
+ nargs="?",
112
+ help="dir to write results to",
113
+ default="outputs/txt2img-samples"
114
+ )
115
+ parser.add_argument(
116
+ "--skip_grid",
117
+ action='store_true',
118
+ help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
119
+ )
120
+ parser.add_argument(
121
+ "--skip_save",
122
+ action='store_true',
123
+ help="do not save individual samples. For speed measurements.",
124
+ )
125
+ parser.add_argument(
126
+ "--ddim_steps",
127
+ type=int,
128
+ default=50,
129
+ help="number of ddim sampling steps",
130
+ )
131
+ parser.add_argument(
132
+ "--plms",
133
+ action='store_true',
134
+ help="use plms sampling",
135
+ )
136
+ parser.add_argument(
137
+ "--dpm_solver",
138
+ action='store_true',
139
+ help="use dpm_solver sampling",
140
+ )
141
+ parser.add_argument(
142
+ "--laion400m",
143
+ action='store_true',
144
+ help="uses the LAION400M model",
145
+ )
146
+ parser.add_argument(
147
+ "--fixed_code",
148
+ action='store_true',
149
+ help="if enabled, uses the same starting code across samples ",
150
+ )
151
+ parser.add_argument(
152
+ "--ddim_eta",
153
+ type=float,
154
+ default=0.0,
155
+ help="ddim eta (eta=0.0 corresponds to deterministic sampling",
156
+ )
157
+ parser.add_argument(
158
+ "--n_iter",
159
+ type=int,
160
+ default=2,
161
+ help="sample this often",
162
+ )
163
+ parser.add_argument(
164
+ "--H",
165
+ type=int,
166
+ default=512,
167
+ help="image height, in pixel space",
168
+ )
169
+ parser.add_argument(
170
+ "--W",
171
+ type=int,
172
+ default=512,
173
+ help="image width, in pixel space",
174
+ )
175
+ parser.add_argument(
176
+ "--C",
177
+ type=int,
178
+ default=4,
179
+ help="latent channels",
180
+ )
181
+ parser.add_argument(
182
+ "--f",
183
+ type=int,
184
+ default=8,
185
+ help="downsampling factor",
186
+ )
187
+ parser.add_argument(
188
+ "--n_samples",
189
+ type=int,
190
+ default=3,
191
+ help="how many samples to produce for each given prompt. A.k.a. batch size",
192
+ )
193
+ parser.add_argument(
194
+ "--n_rows",
195
+ type=int,
196
+ default=0,
197
+ help="rows in the grid (default: n_samples)",
198
+ )
199
+ parser.add_argument(
200
+ "--scale",
201
+ type=float,
202
+ default=7.5,
203
+ help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
204
+ )
205
+ parser.add_argument(
206
+ "--from-file",
207
+ type=str,
208
+ help="if specified, load prompts from this file",
209
+ )
210
+ parser.add_argument(
211
+ "--config",
212
+ type=str,
213
+ default="configs/stable-diffusion/v1-inference.yaml",
214
+ help="path to config which constructs model",
215
+ )
216
+ parser.add_argument(
217
+ "--ckpt",
218
+ type=str,
219
+ default="models/ldm/stable-diffusion-v1/model.ckpt",
220
+ help="path to checkpoint of model",
221
+ )
222
+ parser.add_argument(
223
+ "--seed",
224
+ type=int,
225
+ default=42,
226
+ help="the seed (for reproducible sampling)",
227
+ )
228
+ parser.add_argument(
229
+ "--precision",
230
+ type=str,
231
+ help="evaluate at this precision",
232
+ choices=["full", "autocast"],
233
+ default="autocast"
234
+ )
235
+ opt = parser.parse_args()
236
+
237
+ if opt.laion400m:
238
+ print("Falling back to LAION 400M model...")
239
+ opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
240
+ opt.ckpt = "models/ldm/text2img-large/model.ckpt"
241
+ opt.outdir = "outputs/txt2img-samples-laion400m"
242
+
243
+ seed_everything(opt.seed)
244
+
245
+ config = OmegaConf.load(f"{opt.config}")
246
+ model = load_model_from_config(config, f"{opt.ckpt}")
247
+
248
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
249
+ model = model.to(device)
250
+
251
+ if opt.dpm_solver:
252
+ sampler = DPMSolverSampler(model)
253
+ elif opt.plms:
254
+ sampler = PLMSSampler(model)
255
+ else:
256
+ sampler = DDIMSampler(model)
257
+
258
+ os.makedirs(opt.outdir, exist_ok=True)
259
+ outpath = opt.outdir
260
+
261
+ print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
262
+ wm = "StableDiffusionV1"
263
+ wm_encoder = WatermarkEncoder()
264
+ wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
265
+
266
+ batch_size = opt.n_samples
267
+ n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
268
+ if not opt.from_file:
269
+ prompt = opt.prompt
270
+ assert prompt is not None
271
+ data = [batch_size * [prompt]]
272
+
273
+ else:
274
+ print(f"reading prompts from {opt.from_file}")
275
+ with open(opt.from_file, "r") as f:
276
+ data = f.read().splitlines()
277
+ data = list(chunk(data, batch_size))
278
+
279
+ sample_path = os.path.join(outpath, "samples")
280
+ os.makedirs(sample_path, exist_ok=True)
281
+ base_count = len(os.listdir(sample_path))
282
+ grid_count = len(os.listdir(outpath)) - 1
283
+
284
+ start_code = None
285
+ if opt.fixed_code:
286
+ start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
287
+
288
+ precision_scope = autocast if opt.precision=="autocast" else nullcontext
289
+ with torch.no_grad():
290
+ with precision_scope("cuda"):
291
+ with model.ema_scope():
292
+ tic = time.time()
293
+ all_samples = list()
294
+ for n in trange(opt.n_iter, desc="Sampling"):
295
+ for prompts in tqdm(data, desc="data"):
296
+ uc = None
297
+ if opt.scale != 1.0:
298
+ uc = model.get_learned_conditioning(batch_size * [""])
299
+ if isinstance(prompts, tuple):
300
+ prompts = list(prompts)
301
+ c = model.get_learned_conditioning(prompts)
302
+ shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
303
+ samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
304
+ conditioning=c,
305
+ batch_size=opt.n_samples,
306
+ shape=shape,
307
+ verbose=False,
308
+ unconditional_guidance_scale=opt.scale,
309
+ unconditional_conditioning=uc,
310
+ eta=opt.ddim_eta,
311
+ x_T=start_code)
312
+
313
+ x_samples_ddim = model.decode_first_stage(samples_ddim)
314
+ x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
315
+ x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
316
+
317
+ x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim)
318
+
319
+ x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
320
+
321
+ if not opt.skip_save:
322
+ for x_sample in x_checked_image_torch:
323
+ x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
324
+ img = Image.fromarray(x_sample.astype(np.uint8))
325
+ img = put_watermark(img, wm_encoder)
326
+ img.save(os.path.join(sample_path, f"{base_count:05}.png"))
327
+ base_count += 1
328
+
329
+ if not opt.skip_grid:
330
+ all_samples.append(x_checked_image_torch)
331
+
332
+ if not opt.skip_grid:
333
+ # additionally, save as grid
334
+ grid = torch.stack(all_samples, 0)
335
+ grid = rearrange(grid, 'n b c h w -> (n b) c h w')
336
+ grid = make_grid(grid, nrow=n_rows)
337
+
338
+ # to image
339
+ grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
340
+ img = Image.fromarray(grid.astype(np.uint8))
341
+ img = put_watermark(img, wm_encoder)
342
+ img.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
343
+ grid_count += 1
344
+
345
+ toc = time.time()
346
+
347
+ print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
348
+ f" \nEnjoy.")
349
+
350
+
351
+ if __name__ == "__main__":
352
+ main()