File size: 2,037 Bytes
b5e593e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from typing import List, Optional
from langchain.llms.base import LLM
import torch
from transformers import AutoModel, AutoTokenizer
from langchain.llms.utils import enforce_stop_tokens
from fastchat.conversation import (compute_skip_echo_len,
                                   get_default_conv_template)


class ModelLoader(LLM):
    tokenizer: object = None
    model: object = None
    max_token: int = 10000
    temperature: float = 0.1
    top_p = 0.9
    history = []

    def __init__(self):
        super().__init__()

    @property
    def _llm_type(self) -> str:
        return "ChatLLM"

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
            conv = get_default_conv_template("/DATA/gpt/lang/model_cache/THUDM/chatglm-6b-int8").copy()
            conv.append_message(conv.roles[0], prompt)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()
            inputs = self.tokenizer([prompt])
            output_ids = self.model.generate(
                torch.as_tensor(inputs.input_ids).cuda(),
                do_sample=True,
                temperature=self.temperature,
                max_new_tokens=self.max_token,
            )
            outputs = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
            skip_echo_len = compute_skip_echo_len("/DATA/gpt/lang/model_cache/THUDM/chatglm-6b-int8", conv, prompt)
            response = outputs[skip_echo_len:]
            if stop is not None:
                response = enforce_stop_tokens(response, stop)
            self.history =  [[None, response]]

            return response


    def load_model(self, model_name_or_path: str = "/DATA/gpt/lang/model_cache/THUDM/chatglm-6b-int8"):
 
        self.tokenizer = AutoTokenizer.from_pretrained(
            "/DATA/gpt/mingpt-7b/MiniGPT-4-LLaMA-7B",
            trust_remote_code=True
        )
        self.model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
        self.model = self.model.eval()