File size: 6,588 Bytes
b5e593e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
from typing import Dict, List, Optional, Tuple, Union

import torch
from fastchat.conversation import (compute_skip_echo_len,
                                   get_default_conv_template)
from fastchat.serve.inference import load_model as load_fastchat_model
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer


MODEL_CACHE_PATH = os.path.join(os.path.dirname(__file__), 'model_cache')

llm_model_dict = {
    "chatglm": {
        "ChatGLM-6B": "THUDM/chatglm-6b",
        "ChatGLM-6B-int4": "THUDM/chatglm-6b-int4",
        "ChatGLM-6B-int8": "THUDM/chatglm-6b-int8",
        "ChatGLM-6b-int4-qe": "THUDM/chatglm-6b-int4-qe"
    },
    "belle": {
        "BELLE-LLaMA-Local": "/pretrainmodel/belle",
    },
    "vicuna": {
        "Vicuna-Local": "/pretrainmodel/vicuna",
    }
}

os.environ["TOKENIZERS_PARALLELISM"] = "false"

DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE


def torch_gc():
    if torch.cuda.is_available():
        with torch.cuda.device(CUDA_DEVICE):
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()


def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
    num_trans_layers = 28
    per_gpu_layers = 30 / num_gpus

    device_map = {
        'transformer.word_embeddings': 0,
        'transformer.final_layernorm': 0,
        'lm_head': 0
    }

    used = 2
    gpu_target = 0
    for i in range(num_trans_layers):
        if used >= per_gpu_layers:
            gpu_target += 1
            used = 0
        assert gpu_target < num_gpus
        device_map[f'transformer.layers.{i}'] = gpu_target
        used += 1

    return device_map


class ChatLLM(LLM):
    max_token: int = 10000
    temperature: float = 0.1
    top_p = 0.9
    history = []
    model_type: str = "chatglm"
    model_name_or_path: str = "ChatGLM-6B-int4",
    tokenizer: object = None
    model: object = None

    def __init__(self):
        super().__init__()

    @property
    def _llm_type(self) -> str:
        return "ChatLLM"

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:

        if self.model_type == 'vicuna':
            conv = get_default_conv_template(self.model_name_or_path).copy()
            conv.append_message(conv.roles[0], prompt)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()
            inputs = self.tokenizer([prompt])
            output_ids = self.model.generate(
                torch.as_tensor(inputs.input_ids).cuda(),
                do_sample=True,
                temperature=self.temperature,
                max_new_tokens=self.max_token,
            )
            outputs = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
            skip_echo_len = compute_skip_echo_len(self.model_name_or_path, conv, prompt)
            response = outputs[skip_echo_len:]
            torch_gc()
            if stop is not None:
                response = enforce_stop_tokens(response, stop)
            self.history =  [[None, response]]

        elif self.model_type == 'belle':
            prompt = "Human: "+ prompt +" \n\nAssistant: "
            input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(DEVICE)
            generate_ids =  self.model.generate(input_ids, max_new_tokens=self.max_token, do_sample = True, top_k = 30, top_p = self.top_p, temperature = self.temperature, repetition_penalty=1., eos_token_id=2, bos_token_id=1, pad_token_id=0)
            output = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
            response = output[len(prompt)+1:]
            torch_gc()
            if stop is not None:
                response = enforce_stop_tokens(response, stop)
            self.history =  [[None, response]]

        elif self.model_type == 'chatglm':     
            response, _ = self.model.chat(
                self.tokenizer,
                prompt,
                history=self.history,
                max_length=self.max_token,
                temperature=self.temperature,
            )
            torch_gc()
            if stop is not None:
                response = enforce_stop_tokens(response, stop)
            self.history = self.history + [[None, response]]

        return response


    def load_llm(self,
                   llm_device=DEVICE,
                   num_gpus=torch.cuda.device_count(),
                   device_map: Optional[Dict[str, int]] = None,
                   **kwargs):
        if 'chatglm' in self.model_name_or_path.lower():
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path,
                                                       trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path))                            
            if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):

                num_gpus = torch.cuda.device_count()
                if num_gpus < 2 and device_map is None:
                    self.model = (AutoModel.from_pretrained(
                        self.model_name_or_path, trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path), 
                        **kwargs).half().cuda())
                else:
                    from accelerate import dispatch_model

                    model = AutoModel.from_pretrained(self.model_name_or_path,
                                                    trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path),
                                                    **kwargs).half()

                    if device_map is None:
                        device_map = auto_configure_device_map(num_gpus)

                    self.model = dispatch_model(model, device_map=device_map)
            else:
                self.model = (AutoModel.from_pretrained(
                    self.model_name_or_path,
                    trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path)).float().to(llm_device))
            self.model = self.model.eval()

        else:     
            self.model, self.tokenizer = load_fastchat_model(
                model_path = self.model_name_or_path,
                device = llm_device,
                num_gpus = num_gpus
            )