File size: 6,588 Bytes
b5e593e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
from typing import Dict, List, Optional, Tuple, Union
import torch
from fastchat.conversation import (compute_skip_echo_len,
get_default_conv_template)
from fastchat.serve.inference import load_model as load_fastchat_model
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
MODEL_CACHE_PATH = os.path.join(os.path.dirname(__file__), 'model_cache')
llm_model_dict = {
"chatglm": {
"ChatGLM-6B": "THUDM/chatglm-6b",
"ChatGLM-6B-int4": "THUDM/chatglm-6b-int4",
"ChatGLM-6B-int8": "THUDM/chatglm-6b-int8",
"ChatGLM-6b-int4-qe": "THUDM/chatglm-6b-int4-qe"
},
"belle": {
"BELLE-LLaMA-Local": "/pretrainmodel/belle",
},
"vicuna": {
"Vicuna-Local": "/pretrainmodel/vicuna",
}
}
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
device_map = {
'transformer.word_embeddings': 0,
'transformer.final_layernorm': 0,
'lm_head': 0
}
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
class ChatLLM(LLM):
max_token: int = 10000
temperature: float = 0.1
top_p = 0.9
history = []
model_type: str = "chatglm"
model_name_or_path: str = "ChatGLM-6B-int4",
tokenizer: object = None
model: object = None
def __init__(self):
super().__init__()
@property
def _llm_type(self) -> str:
return "ChatLLM"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
if self.model_type == 'vicuna':
conv = get_default_conv_template(self.model_name_or_path).copy()
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
inputs = self.tokenizer([prompt])
output_ids = self.model.generate(
torch.as_tensor(inputs.input_ids).cuda(),
do_sample=True,
temperature=self.temperature,
max_new_tokens=self.max_token,
)
outputs = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
skip_echo_len = compute_skip_echo_len(self.model_name_or_path, conv, prompt)
response = outputs[skip_echo_len:]
torch_gc()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = [[None, response]]
elif self.model_type == 'belle':
prompt = "Human: "+ prompt +" \n\nAssistant: "
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(DEVICE)
generate_ids = self.model.generate(input_ids, max_new_tokens=self.max_token, do_sample = True, top_k = 30, top_p = self.top_p, temperature = self.temperature, repetition_penalty=1., eos_token_id=2, bos_token_id=1, pad_token_id=0)
output = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
response = output[len(prompt)+1:]
torch_gc()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = [[None, response]]
elif self.model_type == 'chatglm':
response, _ = self.model.chat(
self.tokenizer,
prompt,
history=self.history,
max_length=self.max_token,
temperature=self.temperature,
)
torch_gc()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = self.history + [[None, response]]
return response
def load_llm(self,
llm_device=DEVICE,
num_gpus=torch.cuda.device_count(),
device_map: Optional[Dict[str, int]] = None,
**kwargs):
if 'chatglm' in self.model_name_or_path.lower():
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path,
trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path))
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
num_gpus = torch.cuda.device_count()
if num_gpus < 2 and device_map is None:
self.model = (AutoModel.from_pretrained(
self.model_name_or_path, trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path),
**kwargs).half().cuda())
else:
from accelerate import dispatch_model
model = AutoModel.from_pretrained(self.model_name_or_path,
trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path),
**kwargs).half()
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
self.model = dispatch_model(model, device_map=device_map)
else:
self.model = (AutoModel.from_pretrained(
self.model_name_or_path,
trust_remote_code=True, cache_dir=os.path.join(MODEL_CACHE_PATH, self.model_name_or_path)).float().to(llm_device))
self.model = self.model.eval()
else:
self.model, self.tokenizer = load_fastchat_model(
model_path = self.model_name_or_path,
device = llm_device,
num_gpus = num_gpus
)
|