File size: 10,518 Bytes
85e4824 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# Copyright 2022 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# File inspired by source: https://github.com/openai/gym/blob/master/gym/envs/box2d/lunar_lander.py
import argparse
import time
import os
import numpy as np
import simulate as sm
import os
from pathlib import Path
from agent import DuelingDQNAgent, MetricLogger
from params import hyperparams
# This example reimplements the famous lunar lander reinforcement learning environment.
# CONSTANTS From source
# TODO implement scaling
SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well
# TODO integrate random initial forces
INITIAL_RANDOM = 1000.0 # Set 1500 to make game harder
# Lander construction
LANDER_POLY = np.array([(-17, -10, 0), (-17, 0, 0), (-14, 17, 0), (14, 17, 0), (17, 0, 0), (17, -10, 0)])[::-1] / SCALE
LEG_AWAY = 20
LEG_DOWN = -7
LEG_ANGLE = 0.25 # radians
LEG_W, LEG_H = 2, 8
LEG_RIGHT_POLY = (
np.array(
[
(LEG_AWAY, LEG_DOWN, 0),
(LEG_AWAY + LEG_H * np.sin(LEG_ANGLE), LEG_DOWN - LEG_H * np.cos(LEG_ANGLE), 0),
(
LEG_AWAY + LEG_H * np.sin(LEG_ANGLE) + LEG_W * np.sin(np.pi / 2 - LEG_ANGLE),
LEG_DOWN - LEG_H * np.cos(LEG_ANGLE) + LEG_W * np.cos(np.pi / 2 - LEG_ANGLE),
0,
),
(LEG_AWAY + LEG_W * np.sin(np.pi / 2 - LEG_ANGLE), LEG_DOWN + LEG_W * np.cos(np.pi / 2 - LEG_ANGLE), 0),
]
)
/ SCALE
)
LEG_LEFT_POLY = [[-x, y, z] for x, y, z in LEG_RIGHT_POLY][::-1]
LANDER_COLOR = [128 / 255, 102 / 255, 230 / 255]
# terrain construction
VIEWPORT_W = 600 # TODO integrate camera with these exact dimensions
VIEWPORT_H = 400
W = VIEWPORT_W / SCALE
H = VIEWPORT_H / SCALE
CHUNKS = 11
HEIGHTS = np.random.uniform(0, H / 2, size=(CHUNKS + 1,))
CHUNK_X = [W / (CHUNKS - 1) * i for i in range(CHUNKS)]
HELIPAD_x1 = CHUNK_X[CHUNKS // 2 - 1]
HELIPAD_x2 = CHUNK_X[CHUNKS // 2 + 1]
HELIPAD_y = H / 4
HEIGHTS[CHUNKS // 2 - 2] = HELIPAD_y
HEIGHTS[CHUNKS // 2 - 1] = HELIPAD_y
HEIGHTS[CHUNKS // 2 + 0] = HELIPAD_y
HEIGHTS[CHUNKS // 2 + 1] = HELIPAD_y
HEIGHTS[CHUNKS // 2 + 2] = HELIPAD_y
SMOOTH_Y = [0.33 * (HEIGHTS[i - 1] + HEIGHTS[i + 0] + HEIGHTS[i + 1]) for i in range(CHUNKS)]
# advanced features
MAIN_ENGINE_POWER = 13.0 # TODO integrate specific forces
SIDE_ENGINE_POWER = 0.6 # TODO integrate specific forces
LEG_SPRING_TORQUE = 40 # TODO integrate specific forces
SIDE_ENGINE_HEIGHT = 14.0 # TODO integrate specific forces
SIDE_ENGINE_AWAY = 12.0 # TODO integrate specific forces
LAND_POLY = (
[[CHUNK_X[0], SMOOTH_Y[0] - 3, 0]]
+ [[x, y, 0] for x, y in zip(CHUNK_X, SMOOTH_Y)]
+ [[CHUNK_X[-1], SMOOTH_Y[0] - 3, 0]]
)
def make_lander(engine="unity", engine_exe=""):
# Add sm scene
sc = sm.Scene(engine=engine, engine_exe=engine_exe)
# initial lander position sampling
lander_init_pos = (10, 15, 0) + np.random.uniform(2, 4, 3)
lander_init_pos[2] = 0.0 # z axis is always 0, for 2D
lander_material = sm.Material(base_color=LANDER_COLOR)
# create the lander polygons
# first, the main lander body
lander = sm.Polygon(
points=LANDER_POLY,
material=lander_material,
position=lander_init_pos,
name="lunar_lander",
is_actor=True,
physics_component=sm.RigidBodyComponent(
use_gravity=True,
constraints=["freeze_rotation_x", "freeze_rotation_y", "freeze_position_z"],
mass=1,
),
)
# extrude to make 3D visually.
lander.mesh.extrude((0, 0, -1), capping=True, inplace=True)
lander.actuator = sm.Actuator(
mapping=[
sm.ActionMapping("add_force", axis=[1, 0, 0], amplitude=5),
sm.ActionMapping("add_force", axis=[1, 0, 0], amplitude=-5),
sm.ActionMapping("add_force", axis=[0, 1, 0], amplitude=2.5),
],
n=3,
)
# add an invisible box as collider until convex meshes are completed
lander += sm.Box(
position=[0, np.min(LEG_RIGHT_POLY, axis=0)[1], -0.5],
bounds=[0.1, 2 * np.max(LEG_RIGHT_POLY, axis=0)[0], 1],
material=sm.Material.TRANSPARENT,
rotation=[0, 0, 90],
with_collider=True,
name="lander_collider_box_bottom",
)
lander += sm.Box(
position=[-0.6, 0, -0.5],
bounds=[0.1, 26 / SCALE, 1],
material=sm.Material.TRANSPARENT,
rotation=[0, 0, -15],
with_collider=True,
name="lander_collider_box_right",
)
lander += sm.Box(
position=[0.6, 0, -0.5],
bounds=[0.1, 26 / SCALE, 1],
material=sm.Material.TRANSPARENT,
rotation=[0, 0, 15],
with_collider=True,
name="lander_collider_box_left",
)
# add legs as children objects (they take positions as local coordinates!)
r_leg = sm.Polygon(
points=LEG_RIGHT_POLY,
material=lander_material,
parent=lander,
name="lander_r_leg",
# with_collider=True, # TODO can use this when convex colliders is added
)
r_leg.mesh.extrude((0, 0, -1), capping=True, inplace=True)
l_leg = sm.Polygon(
points=LEG_LEFT_POLY,
material=lander_material,
parent=lander,
name="lander_l_leg",
# with_collider=True, # TODO can use this when convex colliders is added
)
l_leg.mesh.extrude((0, 0, -1), capping=True, inplace=True)
# Create land object
land = sm.Polygon(
points=LAND_POLY[::-1], # Reversing vertex order so the normal faces the right direction
material=sm.Material.GRAY,
name="Moon",
)
land.mesh.extrude((0, 0, -1), capping=True, inplace=True)
# Create collider blocks for the land (non-convex meshes are TODO)
for i in range(len(CHUNK_X) - 1):
x1, x2 = CHUNK_X[i], CHUNK_X[i + 1]
y1, y2 = SMOOTH_Y[i], SMOOTH_Y[i + 1]
# compute rotation from generated coordinates
rotation = [0, 0, +90 + np.degrees(np.arctan2(y2 - (y1 + y2) / 2, (x2 - x1) / 2))]
block_i = sm.Box(
position=[(x1 + x2) / 2, (y1 + y2) / 2, -0.5],
bounds=[0.2, 1.025 * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2), 1], # adjustment for better colliders
material=sm.Material.GRAY,
rotation=rotation,
with_collider=True,
name="land_collider_" + str(i),
)
sc += block_i
# add target triangle / cone for reward
sc += sm.Cone(
position=[(HELIPAD_x1 + HELIPAD_x2) / 2, HELIPAD_y, -0.5],
height=10 / SCALE,
radius=10 / SCALE,
material=sm.Material.YELLOW,
name="target",
)
# TODO add lander state sensors for state-based RL
sc += sm.StateSensor(
target_entity=sc.target,
reference_entity=lander,
properties=["position", "rotation", "distance"],
name="goal_sense",
)
# create Euclidean distance reward, scalar changes the reward to a cost
cost = sm.RewardFunction(
type="dense", entity_a=lander, entity_b=sc.target, scalar=-1
) # By default a dense reward equal to the distance between 2 entities
lander += cost
sc += lander
sc += land
return sc
def get_values(state):
return state.get("StateSensor")
def train(agent, env, logger):
episodes = 20000
for e in range(episodes):
state = env.reset()
# Play the game!
for i in range(100):
# Run agent on the state
action = agent.act(get_values(state))
# env.render()
# Agent performs action
next_state, reward, done, info = env.step(action)
print("####################")
print(done)
print("####################")
# Remember
agent.cache(get_values(state), get_values(next_state), action, reward, done)
# Learn
q, loss = agent.learn()
# Logging
logger.log_step(reward, loss, q)
# Update state
state = next_state
# Check if end of game
if done:
break
logger.log_episode(e)
if e % 20 == 0:
logger.record(episode=e, epsilon=agent.exploration_rate, step=agent.curr_step)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--build_exe", default="", type=str, required=False, help="Pre-built unity app for simulate")
parser.add_argument(
"--num_steps", default=100, type=int, required=False, help="number of steps to run the simulator"
)
args = parser.parse_args()
sc = make_lander(engine="unity", engine_exe=args.build_exe)
sc += sm.LightSun()
env = sm.RLEnv(sc, frame_skip=1)
env.reset()
# for i in range(500):
# print(sc.observation_space.sample())
# action = [sc.action_space.sample()]
# print("###############")
# print(action)
# obs, reward, done, info = env.step(action)
# print(obs)
# print(f"step {i}, reward {reward[0]}")
# time.sleep(0.1)
# env.close()
checkpoint = None
# checkpoint = Path('checkpoints/latest/airstriker_net_3.chkpt')
path = "checkpoints/lunar-lander-dueling-dqn-rc"
save_dir = Path(path)
isExist = os.path.exists(path)
if not isExist:
os.makedirs(path)
logger = MetricLogger(save_dir)
print("Training Dueling DQN Agent with step decay!")
agent = DuelingDQNAgent(
state_dim=7,
action_dim=env.action_space.n,
save_dir=save_dir,
checkpoint=checkpoint,
**hyperparams
)
# print("Training Dueling DQN Agent!")
# agent = DuelingDQNAgent(
# state_dim=8,
# action_dim=env.action_space.n,
# save_dir=save_dir,
# checkpoint=checkpoint,
# **hyperparams
# )
# fill_memory(agent, env, 5000)
train(agent, env, logger)
|