Model Card for Model ID
Model Details
Model Description
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Infrence Function
for keyword brand
def generate_brand(keyword):
# Define the roles and markers
B_INST, E_INST = "[INST]", "[/INST]"
B_KW, E_KW = "[KW]", "[/KW]"
# Format your prompt template
prompt = f"""{B_INST} Extract the brand from keyword related to brand loyalty intent.{E_INST}\n
{B_KW} {keyword} {E_KW}
"""
# print("Prompt:")
# print(prompt)
encoding = tokenizer(prompt, return_tensors="pt").to("cuda:0")
output =model.generate(input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
max_new_tokens=20,
do_sample=True,
temperature=0.01,
eos_token_id=tokenizer.eos_token_id,
top_k=0)
#print()
# Subtract the length of input_ids from output to get only the model's response
output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False)
output_text = re.sub('\n+', '\n', output_text) # remove excessive newline characters
#print("Generated Assistant Response:")
return output_text
for keyword category
def generate_cat(list_cat,keyword):
# Define the roles and markers
B_INST, E_INST = "[INST]", "[/INST]"
B_KW, E_KW = "[KW]", "[/KW]"
# Format your prompt template
prompt = f"""{B_INST} Analyze the following keyword searched on amazon with intent of shopping. Identify the product category from the list {list_cat} {E_INST}\n
{B_KW} {keyword} {E_KW}
"""
# print("Prompt:")
# print(prompt)
encoding = tokenizer(prompt, return_tensors="pt").to("cuda:0")
output =model.generate(input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
max_new_tokens=20,
do_sample=True,
temperature=0.01,
eos_token_id=tokenizer.eos_token_id,
top_k=0)
#print()
# Subtract the length of input_ids from output to get only the model's response
output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False)
output_text = re.sub('\n+', '\n', output_text) # remove excessive newline characters
#print("Generated Assistant Response:")
return output_text
for keyword category and brand
def generate_cat(list_cat,keyword):
# Define the roles and markers
B_INST, E_INST = "[INST]", "[/INST]"
B_KW, E_KW = "[KW]", "[/KW]"
# Format your prompt template
prompt = f"""{B_INST} Analyze the following keyword searched on amazon with intent of shopping. Identify the product category from the list {list_cat}.
Extract the brand from keyword related to brand loyalty intent. Output in JSON with keyword, product category, brand as keys.{E_INST}\n
{B_KW} {keyword} {E_KW}
"""
# print("Prompt:")
# print(prompt)
encoding = tokenizer(prompt, return_tensors="pt").to("cuda:0")
output =model.generate(input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
max_new_tokens=20,
do_sample=True,
temperature=0.01,
eos_token_id=tokenizer.eos_token_id,
top_k=0)
#print()
# Subtract the length of input_ids from output to get only the model's response
output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False)
output_text = re.sub('\n+', '\n', output_text) # remove excessive newline characters
#print("Generated Assistant Response:")
return output_text
- Downloads last month
- 3
Model tree for 1DS/adapter-keyword-brand-mapping-Llama-2-7b-chat-hf-v1
Base model
meta-llama/Llama-2-7b-chat-hf