|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
# T5 for Search Query Generation |
|
|
|
```python |
|
class T5ForSQG: |
|
def __init__(self, model_path): |
|
self.model = T5ForConditionalGeneration.from_pretrained(model_path) |
|
self.tokenizer = T5Tokenizer.from_pretrained(model_path) |
|
|
|
def make_queries(self, topic, n=1, device='cpu', batch_size=16): |
|
ds = YourDataSetClass(pd.DataFrame({'topic': ['make queries: '+topic]*n, 'queries': [[]*n]}, index=range(n)), self.tokenizer, 64, 64, 'topic', 'queries') |
|
|
|
loader_params = {'batch_size': n if n < batch_size else batch_size, 'shuffle': False, 'num_workers': 0} |
|
|
|
loader = DataLoader(ds, **loader_params) |
|
|
|
self.model.eval() |
|
|
|
predictions = [] |
|
with torch.no_grad(): |
|
for _, data in enumerate(loader, 0): |
|
y = data['target_ids'].to(device, dtype = torch.long) |
|
ids = data['source_ids'].to(device, dtype = torch.long) |
|
mask = data['source_mask'].to(device, dtype = torch.long) |
|
|
|
generated_ids = self.model.generate( |
|
input_ids = ids, |
|
attention_mask = mask, |
|
max_length=64, |
|
num_beams=1, |
|
repetition_penalty=2.5, |
|
length_penalty=1.0, |
|
do_sample = True, |
|
temperature = 1.5, |
|
top_k = 10, |
|
top_p = 0.95 |
|
) |
|
|
|
preds = list(set([self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids])) |
|
predictions.extend(preds) |
|
|
|
return list(set(predictions)) |
|
``` |