metadata
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: Spoof_detection
results: []
Spoof_detection
This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7526
- Wer: 0.1090
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
82.2809 | 0.66 | 500 | 4.5229 | 0.1090 |
1.8956 | 1.33 | 1000 | 1.8185 | 0.1090 |
1.842 | 1.99 | 1500 | 1.9392 | 0.1090 |
1.8254 | 2.65 | 2000 | 2.0335 | 0.1090 |
1.8168 | 3.32 | 2500 | 1.8399 | 0.1090 |
1.8353 | 3.98 | 3000 | 1.7997 | 0.1090 |
1.8287 | 4.64 | 3500 | 1.7079 | 0.1090 |
1.8191 | 5.31 | 4000 | 1.7340 | 0.1090 |
1.8111 | 5.97 | 4500 | 1.6820 | 0.1090 |
1.7992 | 6.63 | 5000 | 1.7079 | 0.1090 |
1.7967 | 7.29 | 5500 | 1.7308 | 0.1090 |
1.784 | 7.96 | 6000 | 1.7111 | 0.1090 |
1.7859 | 8.62 | 6500 | 1.7576 | 0.1090 |
1.7828 | 9.28 | 7000 | 1.8259 | 0.1090 |
1.7894 | 9.95 | 7500 | 1.7357 | 0.1090 |
1.7771 | 10.61 | 8000 | 1.9608 | 0.1090 |
1.7682 | 11.27 | 8500 | 1.9535 | 0.1090 |
1.7665 | 11.94 | 9000 | 1.9277 | 0.1090 |
1.7672 | 12.6 | 9500 | 1.8406 | 0.1090 |
1.7577 | 13.26 | 10000 | 1.7859 | 0.1090 |
1.7617 | 13.93 | 10500 | 1.8030 | 0.1090 |
1.7625 | 14.59 | 11000 | 1.7567 | 0.1090 |
1.7586 | 15.25 | 11500 | 1.7667 | 0.1090 |
1.7526 | 15.92 | 12000 | 1.7477 | 0.1090 |
1.7533 | 16.58 | 12500 | 1.7285 | 0.1090 |
1.75 | 17.24 | 13000 | 1.7542 | 0.1090 |
1.7491 | 17.9 | 13500 | 1.7653 | 0.1090 |
1.7483 | 18.57 | 14000 | 1.7344 | 0.1090 |
1.7476 | 19.23 | 14500 | 1.7156 | 0.1090 |
1.745 | 19.89 | 15000 | 1.7431 | 0.1090 |
1.7422 | 20.56 | 15500 | 1.7591 | 0.1090 |
1.744 | 21.22 | 16000 | 1.7794 | 0.1090 |
1.743 | 21.88 | 16500 | 1.6921 | 0.1090 |
1.7385 | 22.55 | 17000 | 1.7567 | 0.1090 |
1.7405 | 23.21 | 17500 | 1.7527 | 0.1090 |
1.7392 | 23.87 | 18000 | 1.7879 | 0.1090 |
1.7388 | 24.54 | 18500 | 1.8047 | 0.1090 |
1.7338 | 25.2 | 19000 | 1.7589 | 0.1090 |
1.7368 | 25.86 | 19500 | 1.7774 | 0.1090 |
1.7347 | 26.53 | 20000 | 1.7601 | 0.1090 |
1.7349 | 27.19 | 20500 | 1.7783 | 0.1090 |
1.7329 | 27.85 | 21000 | 1.7327 | 0.1090 |
1.7306 | 28.51 | 21500 | 1.7403 | 0.1090 |
1.7339 | 29.18 | 22000 | 1.7594 | 0.1090 |
1.7304 | 29.84 | 22500 | 1.7526 | 0.1090 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.12.1