Spoof_detection / README.md
202015004's picture
update model card README.md
a80f9a3
|
raw
history blame
4.06 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: Spoof_detection
    results: []

Spoof_detection

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7526
  • Wer: 0.1090

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
82.2809 0.66 500 4.5229 0.1090
1.8956 1.33 1000 1.8185 0.1090
1.842 1.99 1500 1.9392 0.1090
1.8254 2.65 2000 2.0335 0.1090
1.8168 3.32 2500 1.8399 0.1090
1.8353 3.98 3000 1.7997 0.1090
1.8287 4.64 3500 1.7079 0.1090
1.8191 5.31 4000 1.7340 0.1090
1.8111 5.97 4500 1.6820 0.1090
1.7992 6.63 5000 1.7079 0.1090
1.7967 7.29 5500 1.7308 0.1090
1.784 7.96 6000 1.7111 0.1090
1.7859 8.62 6500 1.7576 0.1090
1.7828 9.28 7000 1.8259 0.1090
1.7894 9.95 7500 1.7357 0.1090
1.7771 10.61 8000 1.9608 0.1090
1.7682 11.27 8500 1.9535 0.1090
1.7665 11.94 9000 1.9277 0.1090
1.7672 12.6 9500 1.8406 0.1090
1.7577 13.26 10000 1.7859 0.1090
1.7617 13.93 10500 1.8030 0.1090
1.7625 14.59 11000 1.7567 0.1090
1.7586 15.25 11500 1.7667 0.1090
1.7526 15.92 12000 1.7477 0.1090
1.7533 16.58 12500 1.7285 0.1090
1.75 17.24 13000 1.7542 0.1090
1.7491 17.9 13500 1.7653 0.1090
1.7483 18.57 14000 1.7344 0.1090
1.7476 19.23 14500 1.7156 0.1090
1.745 19.89 15000 1.7431 0.1090
1.7422 20.56 15500 1.7591 0.1090
1.744 21.22 16000 1.7794 0.1090
1.743 21.88 16500 1.6921 0.1090
1.7385 22.55 17000 1.7567 0.1090
1.7405 23.21 17500 1.7527 0.1090
1.7392 23.87 18000 1.7879 0.1090
1.7388 24.54 18500 1.8047 0.1090
1.7338 25.2 19000 1.7589 0.1090
1.7368 25.86 19500 1.7774 0.1090
1.7347 26.53 20000 1.7601 0.1090
1.7349 27.19 20500 1.7783 0.1090
1.7329 27.85 21000 1.7327 0.1090
1.7306 28.51 21500 1.7403 0.1090
1.7339 29.18 22000 1.7594 0.1090
1.7304 29.84 22500 1.7526 0.1090

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu102
  • Datasets 1.16.1
  • Tokenizers 0.12.1