fined-tune-thai-sentiment
This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4230
- Accuracy: 0.8538
- F1-score: 0.8392
- Precision: 0.8477
- Recall: 0.8538
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 340
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall |
---|---|---|---|---|---|---|---|
1.0028 | 1.0 | 85 | 0.8777 | 0.6257 | 0.4817 | 0.3915 | 0.6257 |
0.8888 | 2.0 | 170 | 0.9379 | 0.3333 | 0.2380 | 0.5070 | 0.3333 |
0.8997 | 3.0 | 255 | 0.9277 | 0.6257 | 0.4817 | 0.3915 | 0.6257 |
0.8955 | 4.0 | 340 | 1.0113 | 0.6199 | 0.4789 | 0.3902 | 0.6199 |
0.7844 | 5.0 | 425 | 0.5345 | 0.8129 | 0.7809 | 0.7515 | 0.8129 |
0.6351 | 6.0 | 510 | 0.4230 | 0.8538 | 0.8392 | 0.8477 | 0.8538 |
0.4101 | 7.0 | 595 | 0.5719 | 0.8187 | 0.8298 | 0.8517 | 0.8187 |
0.3482 | 8.0 | 680 | 0.4687 | 0.8538 | 0.8502 | 0.8480 | 0.8538 |
0.3255 | 9.0 | 765 | 0.5543 | 0.8480 | 0.8369 | 0.8369 | 0.8480 |
0.3008 | 10.0 | 850 | 0.5478 | 0.8421 | 0.8324 | 0.8307 | 0.8421 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 171
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.