|
--- |
|
license: mit |
|
language: |
|
- en |
|
pipeline_tag: audio-classification |
|
tags: |
|
- wavlm |
|
- msp-podcast |
|
- emotion-recognition |
|
- audio |
|
- speech |
|
- categorical |
|
- lucas |
|
- speech-emotion-recognition |
|
--- |
|
The model was trained on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) for the Odyssey 2024 Emotion Recognition competition baseline<br> |
|
This particular model is the categorical based model which predicts: "Angry", "Sad", "Happy", "Surprise", "Fear", "Disgust", "Contempt" and "Neutral". |
|
|
|
|
|
# Benchmarks |
|
F1-scores based on Test3 and Development sets of the Odyssey Competition |
|
<table style="width:500px"> |
|
<tr><th colspan=8 align="center" >Categorical Setup</th></tr> |
|
<tr><th colspan=4 align="center">Test 3</th><th colspan=4 align="center">Development</th></tr> |
|
<tr> <td>F1-Mic.</td> <td>F1-Ma.</td> <td>Prec.</td> <td>Rec.</td> <td>F1-Mic.</td> <td>F1-Ma.</td> <td>Prec.</td> <td>Rec.</td> </tr> |
|
<tr> <td> 0.327</td> <td>0.311</td> <td>0.332</td> <td>0.325</td> <td>0.409</td> <td>0.307</td> <td>0.316</td> <td>0.345</td> </tr> |
|
</table> |
|
|
|
|
|
|
|
For more details: [demo](https://huggingface.co/spaces/3loi/WavLM-SER-Multi-Baseline-Odyssey2024), [paper/soon]() and [GitHub](https://github.com/MSP-UTD/MSP-Podcast_Challenge/tree/main). |
|
|
|
|
|
``` |
|
@InProceedings{Goncalves_2024, |
|
author={L. Goncalves and A. N. Salman and A. {Reddy Naini} and L. Moro-Velazquez and T. Thebaud and L. {Paola Garcia} and N. Dehak and B. Sisman and C. Busso}, |
|
title={Odyssey2024 - Speech Emotion Recognition Challenge: Dataset, Baseline Framework, and Results}, |
|
booktitle={Odyssey 2024: The Speaker and Language Recognition Workshop)}, |
|
volume={To appear}, |
|
year={2024}, |
|
month={June}, |
|
address = {Quebec, Canada}, |
|
} |
|
``` |
|
|
|
|
|
# Usage |
|
```python |
|
from transformers import AutoModelForAudioClassification |
|
import librosa, torch |
|
|
|
#load model |
|
model = AutoModelForAudioClassification.from_pretrained("3loi/SER-Odyssey-Baseline-WavLM-Categorical-Attributes", trust_remote_code=True) |
|
|
|
#get mean/std |
|
mean = model.config.mean |
|
std = model.config.std |
|
|
|
|
|
#load an audio file |
|
audio_path = "/path/to/audio.wav" |
|
raw_wav, _ = librosa.load(audio_path, sr=model.config.sampling_rate) |
|
|
|
#normalize the audio by mean/std |
|
norm_wav = (raw_wav - mean) / (std+0.000001) |
|
|
|
#generate the mask |
|
mask = torch.ones(1, len(norm_wav)) |
|
|
|
#batch it (add dim) |
|
wavs = torch.tensor(norm_wav).unsqueeze(0) |
|
|
|
|
|
#predict |
|
with torch.no_grad(): |
|
pred = model(wavs, mask) |
|
|
|
print(model.config.id2label) |
|
print(pred) |
|
#{0: 'Angry', 1: 'Sad', 2: 'Happy', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Contempt', 7: 'Neutral'} |
|
#tensor([[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]]) |
|
|
|
#convert logits to probability |
|
probabilities = torch.nn.functional.softmax(pred, dim=1) |
|
print(probabilities) |
|
#[[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]] |
|
``` |