finetuned-FER2013 / README.md
3una's picture
Model save
df9700c
|
raw
history blame
5.56 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: finetuned-FER2013
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7133402995471961

finetuned-FER2013

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8079
  • Accuracy: 0.7133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7999 1.0 202 1.7896 0.2713
1.5165 2.0 404 1.4311 0.4758
1.3381 3.0 606 1.2065 0.5468
1.2629 4.0 808 1.1050 0.5886
1.248 5.0 1010 1.0425 0.6054
1.2007 6.0 1212 0.9874 0.6339
1.083 7.0 1414 0.9610 0.6447
1.1061 8.0 1616 0.9385 0.6524
1.0597 9.0 1818 0.9155 0.6517
1.0511 10.0 2020 0.9128 0.6580
1.012 11.0 2222 0.9048 0.6660
1.0479 12.0 2424 0.8821 0.6729
0.9993 13.0 2626 0.8770 0.6747
0.9784 14.0 2828 0.8672 0.6757
1.0439 15.0 3030 0.8766 0.6750
0.9782 16.0 3232 0.8658 0.6747
0.9664 17.0 3434 0.8596 0.6764
1.0132 18.0 3636 0.8491 0.6806
0.9703 19.0 3838 0.8538 0.6827
0.9399 20.0 4040 0.8452 0.6876
0.9299 21.0 4242 0.8420 0.6904
0.9815 22.0 4444 0.8417 0.6872
0.9029 23.0 4646 0.8379 0.6900
0.9142 24.0 4848 0.8336 0.6897
0.8695 25.0 5050 0.8312 0.6938
0.8791 26.0 5252 0.8323 0.6942
0.923 27.0 5454 0.8244 0.6956
0.8866 28.0 5656 0.8261 0.6970
0.9319 29.0 5858 0.8255 0.6991
0.9019 30.0 6060 0.8160 0.7050
0.8785 31.0 6262 0.8169 0.7071
0.8859 32.0 6464 0.8178 0.7039
0.8464 33.0 6666 0.8147 0.7092
0.9143 34.0 6868 0.8232 0.7029
0.8506 35.0 7070 0.8158 0.7032
0.9084 36.0 7272 0.8166 0.7057
0.8616 37.0 7474 0.8132 0.7088
0.8656 38.0 7676 0.8155 0.7046
0.8238 39.0 7878 0.8170 0.7064
0.8673 40.0 8080 0.8190 0.7092
0.8624 41.0 8282 0.8127 0.7095
0.8261 42.0 8484 0.8113 0.7113
0.8218 43.0 8686 0.8150 0.7095
0.8584 44.0 8888 0.8170 0.7071
0.8156 45.0 9090 0.8117 0.7119
0.8075 46.0 9292 0.8133 0.7116
0.8382 47.0 9494 0.8146 0.7088
0.7501 48.0 9696 0.8096 0.7113
0.7859 49.0 9898 0.8102 0.7081
0.8195 50.0 10100 0.8121 0.7085
0.8397 51.0 10302 0.8120 0.7099
0.8561 52.0 10504 0.8089 0.7126
0.8082 53.0 10706 0.8090 0.7133
0.8574 54.0 10908 0.8087 0.7106
0.8611 55.0 11110 0.8093 0.7092
0.8886 56.0 11312 0.8100 0.7092
0.7857 57.0 11514 0.8086 0.7133
0.8467 58.0 11716 0.8083 0.7119
0.795 59.0 11918 0.8083 0.7119
0.7975 60.0 12120 0.8079 0.7133

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0