Roberta-Base-CoNLL2003

This model is a fine-tuned version of roberta-base on the conll2003 dataset.

Model Usage

We made and used the original tokenizer with BPE-Dropout. So, you can't use AutoTokenizer but if subword normalization is not used, original RobertaTokenizer can be substituted.

Example and Tokenizer Repository: github

from transformers import RobertaTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = RobertaTokenizer.from_pretrained("4ldk/Roberta-Base-CoNLL2003")
model = AutoModelForTokenClassification.from_pretrained("4ldk/Roberta-Base-CoNLL2003")

nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Philipp and live in Germany"

nlp(example)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-5
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: AdamW with betas=(0.9,0.999), epsilon=1e-08, and weight decay=0.01
  • lr_scheduler_type: linear with warmup rate = 0.1
  • num_epochs: 20
  • subword regularization p = 0.0 (= trained without subword regularization)

And we add the sentences following the input sentence in the original dataset. Therefore, it cannot be reproduced from the dataset published on huggingface.

Training results

CoNNL2003

It achieves the following results on the evaluation set:

  • Precision: 0.9707
  • Recall: 0.9636
  • F1: 0.9671

It achieves the following results on the test set:

  • Precision: 0.9352
  • Recall: 0.9218
  • F1: 0.9285

CoNNLpp(2023)

Do CoNLL-2003 Named Entity Taggers Still Work Well in 2023) (github)

  • Precision: 0.9244
  • Recall: 0.9225
  • F1: 0.9235

CoNLLpp(CrossWeigh)

CrossWeigh: Training Named Entity Tagger from Imperfect Annotations (github)

  • Precision: 0.9449
  • Recall: 0.9403
  • F1: 0.9426

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
Downloads last month
6
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train 4ldk/Roberta-Base-CoNLL2003