xlm-roberta-large-xnli-anli-v4.0
This model is a fine-tuned version of vicgalle/xlm-roberta-large-xnli-anli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5122
- F1 Macro: 0.8080
- F1 Micro: 0.8090
- Accuracy Balanced: 0.8085
- Accuracy: 0.8090
- Precision Macro: 0.8076
- Recall Macro: 0.8085
- Precision Micro: 0.8090
- Recall Micro: 0.8090
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 8
- eval_batch_size: 64
- seed: 40
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.3655 | 1.69 | 200 | 0.4396 | 0.8166 | 0.8171 | 0.8185 | 0.8171 | 0.8163 | 0.8185 | 0.8171 | 0.8171 |
eval result
Datasets | asadfgglie/nli-zh-tw-all/test | asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test | eval_dataset | test_dataset |
---|---|---|---|---|
eval_loss | 0.507 | 0.871 | 0.486 | 0.512 |
eval_f1_macro | 0.81 | 0.575 | 0.82 | 0.808 |
eval_f1_micro | 0.811 | 0.58 | 0.821 | 0.809 |
eval_accuracy_balanced | 0.811 | 0.584 | 0.821 | 0.808 |
eval_accuracy | 0.811 | 0.58 | 0.821 | 0.809 |
eval_precision_macro | 0.81 | 0.59 | 0.819 | 0.808 |
eval_recall_macro | 0.811 | 0.584 | 0.821 | 0.808 |
eval_precision_micro | 0.811 | 0.58 | 0.821 | 0.809 |
eval_recall_micro | 0.811 | 0.58 | 0.821 | 0.809 |
eval_runtime | 50.981 | 0.641 | 10.403 | 40.014 |
eval_samples_per_second | 166.729 | 1476.463 | 163.413 | 169.942 |
eval_steps_per_second | 2.609 | 23.411 | 2.595 | 2.674 |
Size of dataset | 8500 | 946 | 1700 | 6800 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3
- Downloads last month
- 1
Model tree for 61347023S/xlm-roberta-large-xnli-anli-v4.0
Base model
vicgalle/xlm-roberta-large-xnli-anli