|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** 84basi |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
!pip uninstall unsloth -y |
|
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install --upgrade torch |
|
!pip install --upgrade xformers |
|
!pip install ipywidgets --upgrade |
|
|
|
import torch |
|
if torch.cuda.get_device_capability()[0] >= 8: |
|
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3" |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from unsloth import FastLanguageModel |
|
import torch |
|
max_seq_length = 512 |
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model_id = "llm-jp/llm-jp-3-13b" |
|
new_model_id = "llm-jp-3-13b-finetune-2" |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r = 32, |
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj",], |
|
lora_alpha = 32, |
|
lora_dropout = 0.05, |
|
bias = "none", |
|
use_gradient_checkpointing = "unsloth", |
|
random_state = 3407, |
|
use_rslora = False, |
|
loftq_config = None, |
|
max_seq_length = max_seq_length, |
|
) |
|
|
|
HF_TOKEN = "" #@param {type:"string"} |
|
|
|
from datasets import load_dataset |
|
dataset = load_dataset("json", data_files="/content/ichikara-instruction-003-001-1.json") |
|
|
|
prompt = """### ζη€Ί |
|
{} |
|
### εη |
|
{}""" |
|
|
|
|
|
""" |
|
formatting_prompts_func: εγγΌγΏγγγγ³γγγ«εγγγε½’εΌγ«εγγγ |
|
""" |
|
EOS_TOKEN = tokenizer.eos_token |
|
def formatting_prompts_func(examples): |
|
input = examples["text"] |
|
output = examples["output"] |
|
text = prompt.format(input, output) + EOS_TOKEN |
|
return { "formatted_text" : text, } |
|
pass |
|
|
|
dataset = dataset.map( |
|
formatting_prompts_func, |
|
num_proc= 4, |
|
) |
|
|
|
from trl import SFTTrainer |
|
from transformers import TrainingArguments |
|
from unsloth import is_bfloat16_supported |
|
|
|
trainer = SFTTrainer( |
|
model = model, |
|
tokenizer = tokenizer, |
|
train_dataset=dataset["train"], |
|
max_seq_length = max_seq_length, |
|
dataset_text_field="formatted_text", |
|
packing = False, |
|
args = TrainingArguments( |
|
per_device_train_batch_size = 2, |
|
gradient_accumulation_steps = 4, |
|
num_train_epochs = 1, |
|
logging_steps = 10, |
|
warmup_steps = 10, |
|
save_steps=100, |
|
save_total_limit=2, |
|
max_steps=-1, |
|
learning_rate = 2e-4, |
|
fp16 = not is_bfloat16_supported(), |
|
bf16 = is_bfloat16_supported(), |
|
group_by_length=True, |
|
seed = 3407, |
|
output_dir = "outputs", |
|
report_to = "none", |
|
), |
|
) |
|
|
|
trainer_stats = trainer.train() |
|
|
|
import json |
|
datasets = [] |
|
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
from tqdm import tqdm |
|
|
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### ζη€Ί\n{input}\n### εη\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### εη')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
|