|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
language: |
|
- en |
|
datasets: |
|
- elyza/ELYZA-tasks-100 |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** 84basi |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
|
|
## Readme |
|
|
|
### 事前準備 |
|
- token にご自身の token を指定して下さい |
|
- L4 GPU を選択して下さい |
|
- 事前に elyza-tasks-100-TV_0.jsonl を Google Colab にアップロードして下さい |
|
- 正しく実行が完了すると `/content/llm-jp-3-13b-it-7.0_output.jsonl` が出力されます |
|
|
|
```python |
|
token = "" # token |
|
model_id = "llm-jp-3-13b-it-7.0" # llm-jp-3-13b-it-4.17, gemma-2-27b-it-4.19 |
|
model_name = "84basi/" + model_id |
|
answer_json_file = "./elyza-tasks-100-TV_0.jsonl" |
|
output_json_file = "./" + model_id + "_output.jsonl" |
|
|
|
!pip install unsloth -q |
|
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" -q |
|
|
|
from unsloth import FastLanguageModel |
|
from peft import PeftModel |
|
import torch |
|
import json |
|
|
|
max_seq_length = 2048 |
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = model_name, |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
token = token, |
|
trust_remote_code=True, |
|
) |
|
|
|
# 推論モードに切り替え |
|
FastLanguageModel.for_inference(model) |
|
|
|
# データセットの読み込み。 |
|
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。 |
|
datasets = [] |
|
with open(answer_json_file, "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
# 推論 |
|
from tqdm import tqdm |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
inputs = tokenizer([prompt], return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
with open(output_json_file, 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |