Uploaded model

  • Developed by: 84nth08h
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Usage

Execute following code in Google Colab

max_seq_length = 1024 # Choose any! We auto support RoPE Scaling internally! 
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.


# 必要なライブラリをインストール
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft


# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re

# ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "84nth08h/llm-jp-3-13b-it_lora_r128_max1024_loraAlpha128_dropout0.10_ichikaraAll"


from google.colab import userdata
HF_W=userdata.get('HF_W')
HF_R=userdata.get('HF_R')

!huggingface-cli login --token $HF_R

dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=adapter_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,

    # use_gradient_checkpointing = "unsloth",
    # max_seq_length = max_seq_length,
)


# タスクとなるデータの読み込み。
# 事前にデータをアップロードしてください。
# ichikara_elyza_path

datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
# with open(ichikara_elyza_path+"elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

# モデルを用いてタスクの推論。

# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
  outputs = model.generate(**inputs, max_new_tokens = 1024, use_cache = True, do_sample=True, repetition_penalty=1.2) 
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
  print(prediction)
  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

  # 結果をjsonlで保存。

# ここではadapter_idを元にファイル名を決定しているが、ファイル名は任意で問題なし。
json_file_id = re.sub(".*/", "", adapter_id)
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for 84nth08h/llm-jp-3-13b-it_lora_r128_max1024_loraAlpha128_dropout0.10_ichikaraAll

Finetuned
(1122)
this model