|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-v3-large-finetuned-ner-10epochs-V2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-large-finetuned-ner-10epochs-V2 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1180 |
|
- Precision: 0.9033 |
|
- Recall: 0.9347 |
|
- F1: 0.9187 |
|
- Accuracy: 0.9813 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0663 | 1.0 | 2261 | 0.0715 | 0.8709 | 0.9194 | 0.8945 | 0.9787 | |
|
| 0.0583 | 2.0 | 4522 | 0.0629 | 0.8845 | 0.9267 | 0.9051 | 0.9800 | |
|
| 0.0442 | 3.0 | 6783 | 0.0635 | 0.8841 | 0.9404 | 0.9114 | 0.9802 | |
|
| 0.0402 | 4.0 | 9044 | 0.0588 | 0.9011 | 0.9283 | 0.9145 | 0.9821 | |
|
| 0.0327 | 5.0 | 11305 | 0.0676 | 0.8919 | 0.9385 | 0.9146 | 0.9818 | |
|
| 0.0245 | 6.0 | 13566 | 0.0713 | 0.9037 | 0.9331 | 0.9182 | 0.9821 | |
|
| 0.0183 | 7.0 | 15827 | 0.0848 | 0.9049 | 0.9181 | 0.9114 | 0.9812 | |
|
| 0.0157 | 8.0 | 18088 | 0.0898 | 0.8957 | 0.9411 | 0.9178 | 0.9818 | |
|
| 0.009 | 9.0 | 20349 | 0.1027 | 0.8965 | 0.9385 | 0.9170 | 0.9817 | |
|
| 0.0068 | 10.0 | 22610 | 0.1180 | 0.9033 | 0.9347 | 0.9187 | 0.9813 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|