ABrinkmann's picture
update model card README.md
b69cd65
|
raw
history blame
2.39 kB
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deberta-v3-large-finetuned-ner-10epochs-V2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large-finetuned-ner-10epochs-V2
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1180
- Precision: 0.9033
- Recall: 0.9347
- F1: 0.9187
- Accuracy: 0.9813
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0663 | 1.0 | 2261 | 0.0715 | 0.8709 | 0.9194 | 0.8945 | 0.9787 |
| 0.0583 | 2.0 | 4522 | 0.0629 | 0.8845 | 0.9267 | 0.9051 | 0.9800 |
| 0.0442 | 3.0 | 6783 | 0.0635 | 0.8841 | 0.9404 | 0.9114 | 0.9802 |
| 0.0402 | 4.0 | 9044 | 0.0588 | 0.9011 | 0.9283 | 0.9145 | 0.9821 |
| 0.0327 | 5.0 | 11305 | 0.0676 | 0.8919 | 0.9385 | 0.9146 | 0.9818 |
| 0.0245 | 6.0 | 13566 | 0.0713 | 0.9037 | 0.9331 | 0.9182 | 0.9821 |
| 0.0183 | 7.0 | 15827 | 0.0848 | 0.9049 | 0.9181 | 0.9114 | 0.9812 |
| 0.0157 | 8.0 | 18088 | 0.0898 | 0.8957 | 0.9411 | 0.9178 | 0.9818 |
| 0.009 | 9.0 | 20349 | 0.1027 | 0.8965 | 0.9385 | 0.9170 | 0.9817 |
| 0.0068 | 10.0 | 22610 | 0.1180 | 0.9033 | 0.9347 | 0.9187 | 0.9813 |
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3