MARTINI_enrich_BERTopic_CACUKsupport

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_CACUKsupport")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 322
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 pandemic - rights - nhs - mandates - cannot 22 -1_pandemic_rights_nhs_mandates
0 buddhahood - affirmations - zoom - chant - kyo 202 0_buddhahood_affirmations_zoom_chant
1 vaccines - misinformation - mandates - spreading - mask 39 1_vaccines_misinformation_mandates_spreading
2 tapintofreedom - cacuksupport - webinar - 2022 - call 31 2_tapintofreedom_cacuksupport_webinar_2022
3 vaccination - saveourrightsuk - mandatory - employers - exempt 28 3_vaccination_saveourrightsuk_mandatory_employers

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.