File size: 3,450 Bytes
52102db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# MARTINI_enrich_BERTopic_DrPaulMarik

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_DrPaulMarik")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 18
* Number of training documents: 1806

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | fauci - vaccinated - pfizer - injections - symptoms | 21 | -1_fauci_vaccinated_pfizer_injections | 
| 0 | myocarditis - gardasil - died - incidence - nattokinase | 1059 | 0_myocarditis_gardasil_died_incidence | 
| 1 | novavax - paxlovid - vaccinated - reinfections - 2023 | 80 | 1_novavax_paxlovid_vaccinated_reinfections | 
| 2 | deaths - dowd - 2022 - excess - millennials | 80 | 2_deaths_dowd_2022_excess | 
| 3 | fauci - fbi - wuhan - coronaviruses - bioweapons | 77 | 3_fauci_fbi_wuhan_coronaviruses | 
| 4 | ketogenic - supplements - dr_gazda - photobiomodulation - longcovid | 61 | 4_ketogenic_supplements_dr_gazda_photobiomodulation | 
| 5 | thimerosal - vaccinated - autism - diagnosed - cnn | 55 | 5_thimerosal_vaccinated_autism_diagnosed | 
| 6 | unvaccinated - mandates - lausd - exemptions - mask | 55 | 6_unvaccinated_mandates_lausd_exemptions | 
| 7 | modrna - plasmid - genetically - contaminated - microbiologist | 53 | 7_modrna_plasmid_genetically_contaminated | 
| 8 | vaccination - vaers - stillbirths - pfizer - placenta | 42 | 8_vaccination_vaers_stillbirths_pfizer | 
| 9 | wuhan - lockdowns - shenzhen - millions - riots | 42 | 9_wuhan_lockdowns_shenzhen_millions | 
| 10 | pandemic - wef - sovereignty - weaponize - cbdcs | 37 | 10_pandemic_wef_sovereignty_weaponize | 
| 11 | drpaulmarik - janjekielek - epochtvus - earlytreatment - darkhorsepod | 29 | 11_drpaulmarik_janjekielek_epochtvus_earlytreatment | 
| 12 | pfizer - adverse - falsehoods - rotavirus - mccullough | 24 | 12_pfizer_adverse_falsehoods_rotavirus | 
| 13 | billgates - bioterrorist - malthusian - bmgf - cepi | 24 | 13_billgates_bioterrorist_malthusian_bmgf | 
| 14 | fauci - censorship - misinformation - reclaimthenet - facebook | 24 | 14_fauci_censorship_misinformation_reclaimthenet | 
| 15 | ivermectin - hydroxychloroquine - penicillin - longvax - miracle | 22 | 15_ivermectin_hydroxychloroquine_penicillin_longvax | 
| 16 | remdesivir - ventilator - methylprednisolone - deadly - sedatives | 21 | 16_remdesivir_ventilator_methylprednisolone_deadly |
  
</details>

## Training hyperparameters

* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None

## Framework versions

* Numpy: 1.26.4
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.5.2
* Sentence-transformers: 3.3.1
* Transformers: 4.46.3
* Numba: 0.60.0
* Plotly: 5.24.1
* Python: 3.10.12