MARTINI_enrich_BERTopic_RogerHodkinson

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_RogerHodkinson")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 23
  • Number of training documents: 2203
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 pfizer - fauci - vaccinated - lockdowns - published 20 -1_pfizer_fauci_vaccinated_lockdowns
0 fauci - virologists - conspiracy - laboratories - whistleblower 1174 0_fauci_virologists_conspiracy_laboratories
1 pandemics - ghebreyesus - trudeau - sovereignty - iran 98 1_pandemics_ghebreyesus_trudeau_sovereignty
2 vaccinated - twindemic - bivalent - booster - updated 93 2_vaccinated_twindemic_bivalent_booster
3 vaccinations - unvaccinated - dtap - rotavirus - infant 78 3_vaccinations_unvaccinated_dtap_rotavirus
4 masks - washington - vaccination - stanford - exemptions 66 4_masks_washington_vaccination_stanford
5 myopericarditis - nuvaxovid - physicians - lymphocytic - fatal 64 5_myopericarditis_nuvaxovid_physicians_lymphocytic
6 coroners - cv19 - died - worldwide - 2021 61 6_coroners_cv19_died_worldwide
7 newsom - misinformation - physicians - inoculated - astrazeneca 59 7_newsom_misinformation_physicians_inoculated
8 infodemic - reclaimthenet - censored - zuckerberg - agencies 54 8_infodemic_reclaimthenet_censored_zuckerberg
9 longcovid - lingering - vax - symptoms - sufferers 50 9_longcovid_lingering_vax_symptoms
10 lockdown - china - zhengzhou - sars - wechat 43 10_lockdown_china_zhengzhou_sars
11 pregnant - miscarriages - pfizer - placental - multiparous 42 11_pregnant_miscarriages_pfizer_placental
12 ivermectin - fda - penicillin - cuomo - miracle 40 12_ivermectin_fda_penicillin_cuomo
13 plasmidgate - modrna - polio - snapgene - contaminated 36 13_plasmidgate_modrna_polio_snapgene
14 pfizer - whistleblower - paxton - quillivant - lawsuit 33 14_pfizer_whistleblower_paxton_quillivant
15 fluoxetine - drugmaker - lilly - shortages - mandrola 33 15_fluoxetine_drugmaker_lilly_shortages
16 masks - plastic - waste - expose - diapers 31 16_masks_plastic_waste_expose
17 military - mandated - discharged - exemptions - whistleblowers 30 17_military_mandated_discharged_exemptions
18 oncologists - brca - leukemias - p53 - lymphocytes 27 18_oncologists_brca_leukemias_p53
19 therealanthonyfauci - rfk - joe - shootings - debaters 27 19_therealanthonyfauci_rfk_joe_shootings
20 clots - hypercoagulation - vaccinated - pegylated - embalmed 23 20_clots_hypercoagulation_vaccinated_pegylated
21 euthanasia - remdesivir - midazolam - ventilator - murdered 21 21_euthanasia_remdesivir_midazolam_ventilator

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.