MARTINI_enrich_BERTopic_awakenedworlduk
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_awakenedworlduk")
topic_model.get_topic_info()
Topic overview
- Number of topics: 17
- Number of training documents: 1610
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | trauma - eyes - dr - helps - everyone | 20 | -1_trauma_eyes_dr_helps |
0 | vaccinated - pfizer - jabs - monkeypox - mandates | 882 | 0_vaccinated_pfizer_jabs_monkeypox |
1 | canning - pantry - cooker - survival - lentils | 151 | 1_canning_pantry_cooker_survival |
2 | awakening - consciousness - souls - reality - darkness | 76 | 2_awakening_consciousness_souls_reality |
3 | safeguarding - abused - offences - chancellor - libraries | 54 | 3_safeguarding_abused_offences_chancellor |
4 | brainwashed - bonkers - watched - sovereign - cnn | 49 | 4_brainwashed_bonkers_watched_sovereign |
5 | channel - banned - subscribers - awakened - lol | 49 | 5_channel_banned_subscribers_awakened |
6 | mugwort - echinacea - tinctures - antioxidants - medicinal | 47 | 6_mugwort_echinacea_tinctures_antioxidants |
7 | vegetables - cabbages - radishes - lettuces - sowing | 39 | 7_vegetables_cabbages_radishes_lettuces |
8 | ukraine - shortages - petrol - skyrocketing - electricity | 38 | 8_ukraine_shortages_petrol_skyrocketing |
9 | methylfolate - statins - niacin - magnesium - mitochondria | 37 | 9_methylfolate_statins_niacin_magnesium |
10 | toothpaste - shampoo - rinse - peppermint - ingredients | 34 | 10_toothpaste_shampoo_rinse_peppermint |
11 | nhs - carers - euthanasia - consent - mca | 30 | 11_nhs_carers_euthanasia_consent |
12 | transglutaminase - additives - carcinogenic - meat - benzalkonium | 29 | 12_transglutaminase_additives_carcinogenic_meat |
13 | savetheseeds - gmo - allotment - farmers - shropshire | 29 | 13_savetheseeds_gmo_allotment_farmers |
14 | kwh - gas - charges - october - suppliers | 25 | 14_kwh_gas_charges_october |
15 | propolis - antimicrobial - ointment - wound - candida | 21 | 15_propolis_antimicrobial_ointment_wound |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.3
- Scikit-Learn: 1.5.2
- Sentence-transformers: 3.3.1
- Transformers: 4.46.3
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.10.12
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.