MARTINI_enrich_BERTopic_eskisehironline

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_eskisehironline")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 3
  • Number of training documents: 55
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 ۲۰۱۵ - سوریه - باخبر - تاریخ - کانال 22 -1_۲۰۱۵_سوریه_باخبر_تاریخ
0 استانبول - سرویس - چهارشنبه - ترانسفر - اسکیشهیر 2 0_استانبول_سرویس_چهارشنبه_ترانسفر
1 ایرانی - ایرلاینز - تایید - مبتلایان - پروازهای 31 1_ایرانی_ایرلاینز_تایید_مبتلایان

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.