MARTINI_enrich_BERTopic_healingivermectin

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_healingivermectin")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 260
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 ivermectin - fenbendazole - antitumor - cures - cyanide 22 -1_ivermectin_fenbendazole_antitumor_cures
0 ivermectin - healing - bacterial - hcq - honey 107 0_ivermectin_healing_bacterial_hcq
1 parasitic - pinworms - cancers - schizophrenic - nematode 54 1_parasitic_pinworms_cancers_schizophrenic
2 vaccines - pfizer - conspiracy - deaths - mmr 41 2_vaccines_pfizer_conspiracy_deaths
3 download - recordings - telegram - 700mb - hello 36 3_download_recordings_telegram_700mb

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.