File size: 16,152 Bytes
351f7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import os
import json
import random
from sklearn.ensemble import IsolationForest
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.neural_network import MLPClassifier
from deap import base, creator, tools, algorithms
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import datetime
import time
import threading
import logging
import multiprocessing
from collections import deque
# Logging Configuration
logging.basicConfig(filename='app.log', level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# Memory Model
class MemoryModel:
def __init__(self, memory_file='memory.json', max_memory=1000):
self.memory_file = memory_file
self.max_memory = max_memory
self.memory = self.load_memory()
def load_memory(self):
if os.path.exists(self.memory_file):
with open(self.memory_file, 'r') as file:
return json.load(file)
return []
def save_memory(self):
with open(self.memory_file, 'w') as file:
json.dump(self.memory, file)
def add_entry(self, context, response, emotion_state, timestamp=None):
timestamp = timestamp or datetime.datetime.now().isoformat()
entry = {
'timestamp': timestamp,
'context': context,
'response': response,
'emotion_state': emotion_state
}
self.memory.append(entry)
if len(self.memory) > self.max_memory:
self.memory.pop(0) # Remove the oldest entry
self.save_memory()
def retrieve_memory(self, query, context_window=5):
relevant_entries = [entry for entry in self.memory if query.lower() in entry['context'].lower()]
if relevant_entries:
sorted_entries = sorted(relevant_entries, key=lambda x: x['timestamp'], reverse=True)
return sorted_entries[:context_window]
return None
# Temporal Awareness Module
class TemporalAwareness:
def __init__(self, context_window=5):
self.start_time = datetime.datetime.now()
self.last_event_time = None
self.event_sequence = deque(maxlen=context_window)
self.context_window = context_window
def update_event_time(self, event):
current_time = datetime.datetime.now()
if self.last_event_time:
duration = (current_time - self.last_event_time).total_seconds()
self.event_sequence.append({
'event': event,
'timestamp': current_time.isoformat(),
'duration_since_last': duration
})
else:
self.event_sequence.append({
'event': event,
'timestamp': current_time.isoformat(),
'duration_since_last': None
})
self.last_event_time = current_time
def estimate_duration(self, event):
recent_events = list(self.event_sequence)
durations = [
seq['duration_since_last'] for seq in recent_events if seq['event'] == event and seq['duration_since_last'] is not None
]
return sum(durations) / len(durations) if durations else None
# HRL Neuron Class
class HRLNeuron(nn.Module):
def __init__(self, input_dim, output_dim):
super(HRLNeuron, self).__init__()
self.fc1 = nn.Linear(input_dim, 128)
self.fc2 = nn.Linear(128, output_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class HRLAgent:
def __init__(self, input_dim, output_dim, lr=0.001):
self.model = HRLNeuron(input_dim, output_dim)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.criterion = nn.MSELoss()
def act(self, state):
state = torch.FloatTensor(state)
q_values = self.model(state)
return q_values
def learn(self, state, action, reward, next_state, gamma=0.99):
state = torch.FloatTensor(state)
next_state = torch.FloatTensor(next_state)
reward = torch.FloatTensor([reward])
action = torch.LongTensor([action])
q_values = self.model(state)
next_q_values = self.model(next_state)
target_q_value = reward + gamma * torch.max(next_q_values)
loss = self.criterion(q_values[action], target_q_value)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# Initialize Example Emotions Dataset
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding
encoder = OneHotEncoder(handle_unknown='ignore')
contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
# Encoding emotions
emotions_target = df['emotion'].astype('category').cat.codes
emotion_classes = df['emotion'].astype('category').cat.categories
# Train Neural Network
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
model = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000, random_state=42)
model.fit(X_train, y_train)
# Isolation Forest Anomaly Detection Model
historical_data = np.array([model.predict(contexts_encoded)]).T
isolation_forest = IsolationForest(contamination=0.1, random_state=42)
isolation_forest.fit(historical_data)
# Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive'},
'pleasure': {'percentage': 10, 'motivation': 'selfish'},
'sadness': {'percentage': 10, 'motivation': 'negative'},
'grief': {'percentage': 10, 'motivation': 'negative'},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong'},
'calmness': {'percentage': 10, 'motivation': 'neutral'},
'determination': {'percentage': 10, 'motivation': 'positive'},
'resentment': {'percentage': 10, 'motivation': 'negative'},
'glory': {'percentage': 10, 'motivation': 'positive'},
'motivation': {'percentage': 10, 'motivation': 'positive'},
'ideal_state': {'percentage': 100, 'motivation': 'balanced'},
'fear': {'percentage': 10, 'motivation': 'defensive'},
'surprise': {'percentage': 10, 'motivation': 'unexpected'},
'anticipation': {'percentage': 10, 'motivation': 'predictive'},
'trust': {'percentage': 10, 'motivation': 'reliable'},
'disgust': {'percentage': 10, 'motivation': 'repulsive'},
'optimism': {'percentage': 10, 'motivation': 'hopeful'},
'pessimism': {'percentage': 10, 'motivation': 'doubtful'},
'boredom': {'percentage': 10, 'motivation': 'indifferent'},
'envy': {'percentage': 10, 'motivation': 'jealous'}
}
# Adjust all emotions to a total of 200%
total_percentage = 200
default_percentage = total_percentage / len(emotions)
for emotion in emotions:
emotions[emotion]['percentage'] = default_percentage
emotion_history_file = 'emotion_history.json'
# Load historical data from file if exists
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
# Save historical data to file
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
# Load previous emotional states
emotion_history = load_historical_data()
# Function to update emotions
def update_emotion(emotion, percentage):
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
# Ensure total percentage remains 200%
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
# Function to normalize context
def normalize_context(context):
return context.lower().strip()
# Function to evolve emotions using genetic algorithm (Hyper-Evolution)
def evolve_emotions():
def evaluate(individual):
ideal_state = individual[-1]
other_emotions = individual[:-1]
return abs(ideal_state - 100), sum(other_emotions)
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attribute", lambda: random.uniform(0, 20))
toolbox.register("individual", tools.initCycle, creator.Individual, toolbox.attribute, n=(len(emotions) - 1))
toolbox.register("ideal_state", lambda: random.uniform(80, 120))
toolbox.register("complete_individual", tools.initConcat, creator.Individual, toolbox.individual, toolbox.ideal_state)
toolbox.register("population", tools.initRepeat, list, toolbox.complete_individual)
toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selTournament, tournsize=3)
population = toolbox.population(n=100)
for gen in range(100):
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = toolbox.select(offspring, k=len(population))
if gen % 20 == 0:
toolbox.register("mate", tools.cxBlend, alpha=random.uniform(0.1, 0.9))
toolbox.register("mutate", tools.mutPolynomialBounded, eta=random.uniform(0.5, 1.5), low=0, up=20, indpb=0.2)
best_ind = tools.selBest(population, k=1)[0]
return best_ind[:-1], best_ind[-1]
# Additional Genetic Algorithms
def evolve_language_model():
def evaluate_language(individual):
return random.random(),
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("LanguageIndividual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("language_gene", lambda: random.randint(0, 1))
toolbox.register("language_individual", tools.initRepeat, creator.LanguageIndividual, toolbox.language_gene, n=100)
toolbox.register("language_population", tools.initRepeat, list, toolbox.language_individual)
toolbox.register("evaluate", evaluate_language)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
population = toolbox.language_population(n=50)
for gen in range(100):
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = toolbox.select(offspring, k=len(population))
best_language_model = tools.selBest(population, k=1)[0]
return best_language_model
def evolve_emotion_recognition():
def evaluate_emotion_recognition(individual):
return random.random(),
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("EmotionRecognitionIndividual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("emotion_gene", lambda: random.randint(0, 1))
toolbox.register("emotion_individual", tools.initRepeat, creator.EmotionRecognitionIndividual, toolbox.emotion_gene, n=100)
toolbox.register("emotion_population", tools.initRepeat, list, toolbox.emotion_individual)
toolbox.register("evaluate", evaluate_emotion_recognition)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
population = toolbox.emotion_population(n=50)
for gen in range(100):
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = toolbox.select(offspring, k=len(population))
best_emotion_recognition = tools.selBest(population, k=1)[0]
return best_emotion_recognition
# Evolutionary System Implementation
DNA_LENGTH = 10 # Example DNA length
POPULATION_SIZE = 50
GENERATIONS = 100
NUM_ALGORITHMS = 3
# Define the initial DNA structure
def generate_random_dna():
return [random.uniform(0, 1) for _ in range(DNA_LENGTH)]
# Create initial populations for each algorithm
populations = [[generate_random_dna() for _ in range(POPULATION_SIZE)] for _ in range(NUM_ALGORITHMS)]
# Example Fitness Functions
def fitness_function_1(dna):
return sum(dna) # Simplistic example fitness function
def fitness_function_2(dna):
return np.prod(dna) # Simplistic example fitness function
def fitness_function_3(dna):
return np.mean(dna) # Simplistic example fitness function
fitness_functions = [fitness_function_1, fitness_function_2, fitness_function_3]
# Genetic Operators
def tournament_selection(population, fitness_fn):
tournament_size = 5
selected = random.sample(population, tournament_size)
selected.sort(key=fitness_fn, reverse=True)
return selected[0]
def crossover(parent1, parent2):
point = random.randint(0, DNA_LENGTH - 1)
child1 = parent1[:point] + parent2[point:]
child2 = parent2[:point] + parent1[point:]
return child1, child2
def mutate(dna, mutation_rate=0.01):
return [gene if random.random() > mutation_rate else random.uniform(0, 1) for gene in dna]
def evolve(population, fitness_fn, generations=GENERATIONS):
for _ in range(generations):
new_population = []
for _ in range(POPULATION_SIZE // 2):
parent1 = tournament_selection(population, fitness_fn)
parent2 = tournament_selection(population, fitness_fn)
child1, child2 = crossover(parent1, parent2)
new_population.append(mutate(child1))
new_population.append(mutate(child2))
population = sorted(new_population, key=fitness_fn, reverse=True)[:POPULATION_SIZE]
return population
# Evolve populations for each of the first three algorithms
for i in range(NUM_ALGORITHMS):
populations[i] = evolve(populations[i], fitness_functions[i])
# Combine the best individuals from each algorithm
def create_hybrid_population(populations, num_best=10):
hybrid_population = []
for pop in populations:
hybrid_population.extend(sorted(pop, key=lambda dna: sum([fn(dna) for fn in fitness_functions]), reverse=True)[:num_best])
return hybrid_population
hybrid_population = create_hybrid_population(populations)
# Example criteria evolution mechanism
def evolve_fitness_criteria(hybrid_population):
average_gene = np.mean([np.mean(dna) for dna in hybrid_population])
if average_gene > 0.5:
return lambda dna: sum(dna) * 1.1
else:
return lambda dna: sum(dna) * 0.9
# Update fitness functions based on new criteria
new_fitness_fn = evolve_fitness_criteria(hybrid_population)
fitness_functions = [new_fitness_fn] * NUM_ALGORITHMS
# Evolve the hybrid population with the new fitness criteria
hybrid_population = evolve(hybrid_population, new_fitness_fn)
# Example of usage in the system
logging.info("Initial populations evolved independently.")
logging.info("Hybrid population created and evolved with new fitness criteria.")
|