File size: 16,152 Bytes
351f7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import json
import random
from sklearn.ensemble import IsolationForest
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.neural_network import MLPClassifier
from deap import base, creator, tools, algorithms
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import datetime
import time
import threading
import logging
import multiprocessing
from collections import deque

# Logging Configuration
logging.basicConfig(filename='app.log', level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')

# Memory Model
class MemoryModel:
    def __init__(self, memory_file='memory.json', max_memory=1000):
        self.memory_file = memory_file
        self.max_memory = max_memory
        self.memory = self.load_memory()

    def load_memory(self):
        if os.path.exists(self.memory_file):
            with open(self.memory_file, 'r') as file:
                return json.load(file)
        return []

    def save_memory(self):
        with open(self.memory_file, 'w') as file:
            json.dump(self.memory, file)

    def add_entry(self, context, response, emotion_state, timestamp=None):
        timestamp = timestamp or datetime.datetime.now().isoformat()
        entry = {
            'timestamp': timestamp,
            'context': context,
            'response': response,
            'emotion_state': emotion_state
        }
        self.memory.append(entry)
        if len(self.memory) > self.max_memory:
            self.memory.pop(0)  # Remove the oldest entry
        self.save_memory()

    def retrieve_memory(self, query, context_window=5):
        relevant_entries = [entry for entry in self.memory if query.lower() in entry['context'].lower()]
        if relevant_entries:
            sorted_entries = sorted(relevant_entries, key=lambda x: x['timestamp'], reverse=True)
            return sorted_entries[:context_window]
        return None

# Temporal Awareness Module
class TemporalAwareness:
    def __init__(self, context_window=5):
        self.start_time = datetime.datetime.now()
        self.last_event_time = None
        self.event_sequence = deque(maxlen=context_window)
        self.context_window = context_window

    def update_event_time(self, event):
        current_time = datetime.datetime.now()
        if self.last_event_time:
            duration = (current_time - self.last_event_time).total_seconds()
            self.event_sequence.append({
                'event': event,
                'timestamp': current_time.isoformat(),
                'duration_since_last': duration
            })
        else:
            self.event_sequence.append({
                'event': event,
                'timestamp': current_time.isoformat(),
                'duration_since_last': None
            })
        self.last_event_time = current_time

    def estimate_duration(self, event):
        recent_events = list(self.event_sequence)
        durations = [
            seq['duration_since_last'] for seq in recent_events if seq['event'] == event and seq['duration_since_last'] is not None
        ]
        return sum(durations) / len(durations) if durations else None

# HRL Neuron Class
class HRLNeuron(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(HRLNeuron, self).__init__()
        self.fc1 = nn.Linear(input_dim, 128)
        self.fc2 = nn.Linear(128, output_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

class HRLAgent:
    def __init__(self, input_dim, output_dim, lr=0.001):
        self.model = HRLNeuron(input_dim, output_dim)
        self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
        self.criterion = nn.MSELoss()

    def act(self, state):
        state = torch.FloatTensor(state)
        q_values = self.model(state)
        return q_values

    def learn(self, state, action, reward, next_state, gamma=0.99):
        state = torch.FloatTensor(state)
        next_state = torch.FloatTensor(next_state)
        reward = torch.FloatTensor([reward])
        action = torch.LongTensor([action])

        q_values = self.model(state)
        next_q_values = self.model(next_state)
        target_q_value = reward + gamma * torch.max(next_q_values)

        loss = self.criterion(q_values[action], target_q_value)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

# Initialize Example Emotions Dataset
data = {
    'context': [
        'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
        'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
        'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
        'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
        'I am pessimistic', 'I feel bored', 'I am envious'
    ],
    'emotion': [
        'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
        'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
        'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
    ]
}
df = pd.DataFrame(data)

# Encoding the contexts using One-Hot Encoding
encoder = OneHotEncoder(handle_unknown='ignore')
contexts_encoded = encoder.fit_transform(df[['context']]).toarray()

# Encoding emotions
emotions_target = df['emotion'].astype('category').cat.codes
emotion_classes = df['emotion'].astype('category').cat.categories

# Train Neural Network
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
model = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000, random_state=42)
model.fit(X_train, y_train)

# Isolation Forest Anomaly Detection Model
historical_data = np.array([model.predict(contexts_encoded)]).T
isolation_forest = IsolationForest(contamination=0.1, random_state=42)
isolation_forest.fit(historical_data)

# Emotional States
emotions = {
    'joy': {'percentage': 10, 'motivation': 'positive'},
    'pleasure': {'percentage': 10, 'motivation': 'selfish'},
    'sadness': {'percentage': 10, 'motivation': 'negative'},
    'grief': {'percentage': 10, 'motivation': 'negative'},
    'anger': {'percentage': 10, 'motivation': 'traumatic or strong'},
    'calmness': {'percentage': 10, 'motivation': 'neutral'},
    'determination': {'percentage': 10, 'motivation': 'positive'},
    'resentment': {'percentage': 10, 'motivation': 'negative'},
    'glory': {'percentage': 10, 'motivation': 'positive'},
    'motivation': {'percentage': 10, 'motivation': 'positive'},
    'ideal_state': {'percentage': 100, 'motivation': 'balanced'},
    'fear': {'percentage': 10, 'motivation': 'defensive'},
    'surprise': {'percentage': 10, 'motivation': 'unexpected'},
    'anticipation': {'percentage': 10, 'motivation': 'predictive'},
    'trust': {'percentage': 10, 'motivation': 'reliable'},
    'disgust': {'percentage': 10, 'motivation': 'repulsive'},
    'optimism': {'percentage': 10, 'motivation': 'hopeful'},
    'pessimism': {'percentage': 10, 'motivation': 'doubtful'},
    'boredom': {'percentage': 10, 'motivation': 'indifferent'},
    'envy': {'percentage': 10, 'motivation': 'jealous'}
}

# Adjust all emotions to a total of 200%
total_percentage = 200
default_percentage = total_percentage / len(emotions)
for emotion in emotions:
    emotions[emotion]['percentage'] = default_percentage

emotion_history_file = 'emotion_history.json'

# Load historical data from file if exists
def load_historical_data(file_path=emotion_history_file):
    if os.path.exists(file_path):
with open(file_path, 'r') as file:
            return json.load(file)
    return []

# Save historical data to file
def save_historical_data(historical_data, file_path=emotion_history_file):
    with open(file_path, 'w') as file:
        json.dump(historical_data, file)

# Load previous emotional states
emotion_history = load_historical_data()

# Function to update emotions
def update_emotion(emotion, percentage):
    emotions['ideal_state']['percentage'] -= percentage
    emotions[emotion]['percentage'] += percentage

    # Ensure total percentage remains 200%
    total_current = sum(e['percentage'] for e in emotions.values())
    adjustment = total_percentage - total_current
    emotions['ideal_state']['percentage'] += adjustment

# Function to normalize context
def normalize_context(context):
    return context.lower().strip()

# Function to evolve emotions using genetic algorithm (Hyper-Evolution)
def evolve_emotions():
    def evaluate(individual):
        ideal_state = individual[-1]
        other_emotions = individual[:-1]
        return abs(ideal_state - 100), sum(other_emotions)

    creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
    creator.create("Individual", list, fitness=creator.FitnessMin)

    toolbox = base.Toolbox()
    toolbox.register("attribute", lambda: random.uniform(0, 20))
    toolbox.register("individual", tools.initCycle, creator.Individual, toolbox.attribute, n=(len(emotions) - 1))
    toolbox.register("ideal_state", lambda: random.uniform(80, 120))
    toolbox.register("complete_individual", tools.initConcat, creator.Individual, toolbox.individual, toolbox.ideal_state)
    toolbox.register("population", tools.initRepeat, list, toolbox.complete_individual)

    toolbox.register("evaluate", evaluate)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
    toolbox.register("select", tools.selTournament, tournsize=3)

    population = toolbox.population(n=100)

    for gen in range(100):
        offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2)
        fits = toolbox.map(toolbox.evaluate, offspring)
        for fit, ind in zip(fits, offspring):
            ind.fitness.values = fit
        population = toolbox.select(offspring, k=len(population))

        if gen % 20 == 0:
            toolbox.register("mate", tools.cxBlend, alpha=random.uniform(0.1, 0.9))
            toolbox.register("mutate", tools.mutPolynomialBounded, eta=random.uniform(0.5, 1.5), low=0, up=20, indpb=0.2)

    best_ind = tools.selBest(population, k=1)[0]
    return best_ind[:-1], best_ind[-1]

# Additional Genetic Algorithms
def evolve_language_model():
    def evaluate_language(individual):
        return random.random(),

    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("LanguageIndividual", list, fitness=creator.FitnessMax)

    toolbox = base.Toolbox()
    toolbox.register("language_gene", lambda: random.randint(0, 1))
    toolbox.register("language_individual", tools.initRepeat, creator.LanguageIndividual, toolbox.language_gene, n=100)
    toolbox.register("language_population", tools.initRepeat, list, toolbox.language_individual)

    toolbox.register("evaluate", evaluate_language)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
    toolbox.register("select", tools.selTournament, tournsize=3)

    population = toolbox.language_population(n=50)

    for gen in range(100):
        offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
        fits = toolbox.map(toolbox.evaluate, offspring)
        for fit, ind in zip(fits, offspring):
            ind.fitness.values = fit
        population = toolbox.select(offspring, k=len(population))

    best_language_model = tools.selBest(population, k=1)[0]
    return best_language_model

def evolve_emotion_recognition():
    def evaluate_emotion_recognition(individual):
        return random.random(),

    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("EmotionRecognitionIndividual", list, fitness=creator.FitnessMax)

    toolbox = base.Toolbox()
    toolbox.register("emotion_gene", lambda: random.randint(0, 1))
    toolbox.register("emotion_individual", tools.initRepeat, creator.EmotionRecognitionIndividual, toolbox.emotion_gene, n=100)
    toolbox.register("emotion_population", tools.initRepeat, list, toolbox.emotion_individual)

    toolbox.register("evaluate", evaluate_emotion_recognition)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
    toolbox.register("select", tools.selTournament, tournsize=3)

    population = toolbox.emotion_population(n=50)

    for gen in range(100):
        offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
        fits = toolbox.map(toolbox.evaluate, offspring)
        for fit, ind in zip(fits, offspring):
            ind.fitness.values = fit
        population = toolbox.select(offspring, k=len(population))

    best_emotion_recognition = tools.selBest(population, k=1)[0]
    return best_emotion_recognition

# Evolutionary System Implementation

DNA_LENGTH = 10  # Example DNA length
POPULATION_SIZE = 50
GENERATIONS = 100
NUM_ALGORITHMS = 3

# Define the initial DNA structure
def generate_random_dna():
    return [random.uniform(0, 1) for _ in range(DNA_LENGTH)]

# Create initial populations for each algorithm
populations = [[generate_random_dna() for _ in range(POPULATION_SIZE)] for _ in range(NUM_ALGORITHMS)]

# Example Fitness Functions
def fitness_function_1(dna):
    return sum(dna)  # Simplistic example fitness function

def fitness_function_2(dna):
    return np.prod(dna)  # Simplistic example fitness function

def fitness_function_3(dna):
    return np.mean(dna)  # Simplistic example fitness function

fitness_functions = [fitness_function_1, fitness_function_2, fitness_function_3]

# Genetic Operators
def tournament_selection(population, fitness_fn):
    tournament_size = 5
    selected = random.sample(population, tournament_size)
    selected.sort(key=fitness_fn, reverse=True)
    return selected[0]

def crossover(parent1, parent2):
    point = random.randint(0, DNA_LENGTH - 1)
    child1 = parent1[:point] + parent2[point:]
    child2 = parent2[:point] + parent1[point:]
    return child1, child2

def mutate(dna, mutation_rate=0.01):
    return [gene if random.random() > mutation_rate else random.uniform(0, 1) for gene in dna]

def evolve(population, fitness_fn, generations=GENERATIONS):
    for _ in range(generations):
        new_population = []
        for _ in range(POPULATION_SIZE // 2):
            parent1 = tournament_selection(population, fitness_fn)
            parent2 = tournament_selection(population, fitness_fn)
            child1, child2 = crossover(parent1, parent2)
            new_population.append(mutate(child1))
            new_population.append(mutate(child2))
        population = sorted(new_population, key=fitness_fn, reverse=True)[:POPULATION_SIZE]
    return population

# Evolve populations for each of the first three algorithms
for i in range(NUM_ALGORITHMS):
    populations[i] = evolve(populations[i], fitness_functions[i])

# Combine the best individuals from each algorithm
def create_hybrid_population(populations, num_best=10):
    hybrid_population = []
    for pop in populations:
        hybrid_population.extend(sorted(pop, key=lambda dna: sum([fn(dna) for fn in fitness_functions]), reverse=True)[:num_best])
    return hybrid_population

hybrid_population = create_hybrid_population(populations)

# Example criteria evolution mechanism
def evolve_fitness_criteria(hybrid_population):
    average_gene = np.mean([np.mean(dna) for dna in hybrid_population])
    if average_gene > 0.5:
        return lambda dna: sum(dna) * 1.1
    else:
        return lambda dna: sum(dna) * 0.9

# Update fitness functions based on new criteria
new_fitness_fn = evolve_fitness_criteria(hybrid_population)
fitness_functions = [new_fitness_fn] * NUM_ALGORITHMS

# Evolve the hybrid population with the new fitness criteria
hybrid_population = evolve(hybrid_population, new_fitness_fn)

# Example of usage in the system
logging.info("Initial populations evolved independently.")
logging.info("Hybrid population created and evolved with new fitness criteria.")