RBI-Notif64 / README.md
AISimplyExplained's picture
Update README.md
d041b8d verified
metadata
license: apache-2.0
library_name: peft
base_model: unsloth/mistral-7b

LoRA Adapter for RBI Notifications Dataset

Directions for Usage


!pip install "unsloth[colab_ampere] @ git+https://github.com/unslothai/unsloth.git"
!pip install "git+https://github.com/huggingface/transformers.git"

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

config = PeftConfig.from_pretrained("AISimplyExplained/RBI-Notif64")
model = AutoModelForCausalLM.from_pretrained("unsloth/mistral-7b-bnb-4bit")
model = PeftModel.from_pretrained(model, "AISimplyExplained/RBI-Notif64")
tokenizer= AutoTokenizer.from_pretrained("unsloth/mistral-7b-bnb-4bit")

alpaca_prompt = """Below is an instruction. Write a response that appropriately completes the request.
### Instruction:
{}

### Response:
{}"""


def formatting_prompts_func(examples):

    inputs       = examples["input"]
    outputs      = examples["output"]
    texts = []
    for input, output in zip(inputs, outputs):
        text = alpaca_prompt.format(input, output)
        texts.append(text)
    return { "text" : texts, }


inputs = tokenizer(
  [
      alpaca_prompt.format(
          f'''What is the reference for the procedure to be followed by RRBs for implementation of Section 51A of UAPA, 1967?
''',
          "",
      )
  ]*1, return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True)
output=tokenizer.batch_decode(outputs)[0]
print(output)