w2v-bert-2.0-sq / README.md
AKHug's picture
Upload tokenizer
90eb720 verified
metadata
base_model: facebook/w2v-bert-2.0
datasets:
  - common_voice_17_0
library_name: transformers
license: mit
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: w2v-bert-2.0-sq
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: sq
          split: test
          args: sq
        metrics:
          - type: wer
            value: 0.3543781725888325
            name: Wer

w2v-bert-2.0-sq

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4195
  • Wer: 0.3544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.4885 0.6061 20 3.2689 1.0
3.0283 1.2121 40 3.0235 0.9949
1.7144 1.8182 60 1.3367 0.9483
0.6599 2.4242 80 0.7279 0.6317
0.6135 3.0303 100 0.6208 0.5615
0.4033 3.6364 120 0.5120 0.4730
0.2658 4.2424 140 0.4693 0.4270
0.3056 4.8485 160 0.4831 0.4327
0.2024 5.4545 180 0.4536 0.3991
0.1963 6.0606 200 0.4297 0.3747
0.1494 6.6667 220 0.4195 0.3544

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1