ALM-AHME's picture
update model card README.md
682a3d6
|
raw
history blame
2.32 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled-3rd
    results: []

beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled-3rd

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0488
  • Accuracy: 0.9901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.9
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9835 1.0 114 1.9296 0.2315
1.6045 2.0 229 1.4334 0.5172
1.0525 3.0 343 0.9298 0.6962
0.795 4.0 458 0.6580 0.7709
0.5739 5.0 572 0.4717 0.8366
0.5821 6.0 687 0.3511 0.8851
0.4566 7.0 801 0.2705 0.9204
0.2751 8.0 916 0.2114 0.9384
0.2352 9.0 1030 0.1303 0.9688
0.1831 10.0 1145 0.1194 0.9688
0.1515 11.0 1259 0.0673 0.9869
0.204 11.95 1368 0.0488 0.9901

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3