ALM-AHME's picture
update model card README.md
75bc7e2
---
license: apache-2.0
base_model: facebook/convnextv2-large-1k-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnextv2-large-1k-224-finetuned-LungCancer-Classification-LC25000-AH-40-30-30-Shuffled
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Augmented-Final
split: train
args: Augmented-Final
metrics:
- name: Accuracy
type: accuracy
value: 0.9623477297895903
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnextv2-large-1k-224-finetuned-LungCancer-Classification-LC25000-AH-40-30-30-Shuffled
This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1288
- Accuracy: 0.9623
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2522 | 0.99 | 93 | 0.1288 | 0.9623 |
| 0.1579 | 1.99 | 187 | 0.1211 | 0.9573 |
| 1.1016 | 3.0 | 281 | 1.1018 | 0.3216 |
| 1.0934 | 4.0 | 375 | 1.0787 | 0.6432 |
| 0.5795 | 4.99 | 468 | 0.5864 | 0.6445 |
| 0.5437 | 5.99 | 562 | 0.5733 | 0.7369 |
| 0.3369 | 6.94 | 651 | 0.3298 | 0.9030 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3