vit-base-oxford-brain-tumor_try_stuff
This model is a fine-tuned version of google/vit-base-patch16-224 on the Mahadih534/brain-tumor-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.5406
- Accuracy: 0.8077
- Precision: 0.8514
- Recall: 0.8077
- F1: 0.7830
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.6608 | 1.0 | 11 | 0.5499 | 0.8 | 0.8308 | 0.8 | 0.8039 |
0.6097 | 2.0 | 22 | 0.4836 | 0.88 | 0.8989 | 0.88 | 0.8731 |
0.5882 | 3.0 | 33 | 0.4191 | 0.88 | 0.8853 | 0.88 | 0.8812 |
0.5673 | 4.0 | 44 | 0.4871 | 0.84 | 0.8561 | 0.84 | 0.8427 |
0.5619 | 5.0 | 55 | 0.4079 | 0.92 | 0.92 | 0.92 | 0.92 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for AMfeta99/vit-base-oxford-brain-tumor_try_stuff
Base model
google/vit-base-patch16-224Evaluation results
- Accuracy on Mahadih534/brain-tumor-datasetself-reported0.808
- Precision on Mahadih534/brain-tumor-datasetself-reported0.851
- Recall on Mahadih534/brain-tumor-datasetself-reported0.808
- F1 on Mahadih534/brain-tumor-datasetself-reported0.783