File size: 2,593 Bytes
eeaf923 9252393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
pipeline_tag: text-generation
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Library: https://huggingface.co/Aananda-giri/GPT2-Nepali/
- Docs: [More Information Needed]
---
# GPT-2-Nepali-512 Model
* 512 represents context length
* This repository contains a custom GPT-2 model trained on Nepali text. Follow the instructions below to use this model for text generation.
---
## How to Use the Model
1. **Download the Required Code**
Save the [`model_code.py`](https://github.com/Aananda-giri/llm.np/blob/main/3.%20GPT-2/sebastian_gutenberg/huggingface_hub/model_code.py) file in the same directory where you'll run the script.
2. **Install Required Libraries**
Ensure you have the necessary libraries installed:
```bash
pip install transformers torch
```
3. **Run the Following Code**
Here's an example to load the model and generate text:
```python
import torch
from model_code import GPTModel, generate_and_print_sample
from transformers import PreTrainedTokenizerFast
# Load the tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("Aananda-giri/NepaliBPE")
# Define the starting text
start_context = "रामले भात"
# Load the pre-trained model
loaded_model = GPTModel.from_pretrained("Aananda-giri/GPT2-Nepali")
# Move the model to the appropriate device (CPU or GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
loaded_model.to(device)
# Generate text
generate_and_print_sample(
loaded_model, tokenizer, device, start_context
)
```
---
## Additional Notes
- **Tokenizer**: The model uses a pre-trained tokenizer available at `Aananda-giri/NepaliBPE`. Ensure this is downloaded and accessible during runtime.
- **Dependencies**: This code requires `transformers` (by Hugging Face) and `torch` (PyTorch). Install them if not already installed.
- **Device Compatibility**: The script automatically detects if a CUDA-enabled GPU is available and utilizes it for faster inference. If not, it defaults to the CPU.
---
## Example Output
Input:
```
रामले भात
```
Generated Text:
```
रामले भात खाएर सन्तोष माने। ऊ आफ्ना साथीहरूसँग रमाइलो गरिरहेको थियो।
```
---
Let me know if you'd like further assistance! |