SpanMarker

This is a SpanMarker model that can be used for Named Entity Recognition.

Model Details

Model Description

  • Model Type: SpanMarker
  • Maximum Sequence Length: 256 tokens
  • Maximum Entity Length: 6 words

Model Sources

Model Labels

Label Examples
ANIM "vertebrate", "moth", "G. firmus"
BIO "Aspergillus", "Cladophora", "Zythiostroma"
CEL "pulsar", "celestial bodies", "neutron star"
DIS "social anxiety disorder", "insulin resistance", "Asperger syndrome"
EVE "Spanish Civil War", "National Junior Angus Show", "French Revolution"
FOOD "Neera", "Bellini ( cocktail )", "soju"
INST "Apple II", "Encyclopaedia of Chess Openings", "Android"
LOC "Kīlauea", "Hungary", "Vienna"
MEDIA "CSI : Crime Scene Investigation", "Big Comic Spirits", "American Idol"
MYTH "Priam", "Oźwiena", "Odysseus"
ORG "San Francisco Giants", "Arm Holdings", "RTÉ One"
PER "Amelia Bence", "Tito Lusiardo", "James Cameron"
PLANT "vernal squill", "Sarracenia purpurea", "Drosera rotundifolia"
TIME "prehistory", "Age of Enlightenment", "annual paid holiday"
VEHI "Short 360", "Ferrari 355 Challenge", "Solution F / Chretien Helicopter"

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("Ann Patchett ’s novel \" Bel Canto \", was another creative influence that helped her manage a plentiful cast of characters.")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 2 21.6493 237
Entities per sentence 0 1.5369 36

Training Hyperparameters

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training Results

Epoch Step Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy
0.0576 1000 0.0142 0.8714 0.7729 0.8192 0.9698
0.1153 2000 0.0107 0.8316 0.8815 0.8558 0.9744
0.1729 3000 0.0092 0.8717 0.8797 0.8757 0.9780
0.2306 4000 0.0082 0.8811 0.8886 0.8848 0.9798
0.2882 5000 0.0084 0.8523 0.9163 0.8831 0.9790
0.3459 6000 0.0079 0.8700 0.9113 0.8902 0.9802
0.4035 7000 0.0070 0.9107 0.8859 0.8981 0.9822
0.4611 8000 0.0069 0.9259 0.8797 0.9022 0.9827
0.5188 9000 0.0067 0.9061 0.8965 0.9013 0.9829
0.5764 10000 0.0066 0.9034 0.8996 0.9015 0.9829
0.6341 11000 0.0064 0.9160 0.8996 0.9077 0.9839
0.6917 12000 0.0066 0.8952 0.9121 0.9036 0.9832
0.7494 13000 0.0062 0.9165 0.9009 0.9086 0.9841
0.8070 14000 0.0062 0.9010 0.9121 0.9065 0.9835
0.8647 15000 0.0062 0.9084 0.9127 0.9105 0.9842
0.9223 16000 0.0060 0.9151 0.9098 0.9125 0.9846
0.9799 17000 0.0060 0.9149 0.9113 0.9131 0.9848

Framework Versions

  • Python: 3.8.16
  • SpanMarker: 1.5.0
  • Transformers: 4.29.0.dev0
  • PyTorch: 1.10.1
  • Datasets: 2.15.0
  • Tokenizers: 0.13.2

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results