segformer-b3-finetuned-drugs-in-bins-nov-23

This model is a fine-tuned version of nvidia/mit-b3 on the Aassemtkt/v0.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0494
  • Mean Iou: 0.4900
  • Mean Accuracy: 0.9799
  • Overall Accuracy: 0.9799
  • Accuracy Unlabeled: nan
  • Accuracy Drug-blister: 0.9799
  • Iou Unlabeled: 0.0
  • Iou Drug-blister: 0.9799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Drug-blister Iou Unlabeled Iou Drug-blister
0.4816 0.14 20 0.2387 0.4744 0.9488 0.9488 nan 0.9488 0.0 0.9488
0.1071 0.29 40 0.0969 0.4766 0.9532 0.9532 nan 0.9532 0.0 0.9532
0.102 0.43 60 0.0701 0.4799 0.9599 0.9599 nan 0.9599 0.0 0.9599
0.0828 0.58 80 0.0748 0.4865 0.9731 0.9731 nan 0.9731 0.0 0.9731
0.2944 0.72 100 0.0517 0.4816 0.9633 0.9633 nan 0.9633 0.0 0.9633
0.0308 0.86 120 0.0493 0.4854 0.9709 0.9709 nan 0.9709 0.0 0.9709
0.0247 1.01 140 0.0488 0.4853 0.9706 0.9706 nan 0.9706 0.0 0.9706
0.0194 1.15 160 0.0447 0.4864 0.9728 0.9728 nan 0.9728 0.0 0.9728
0.1873 1.29 180 0.0496 0.4789 0.9579 0.9579 nan 0.9579 0.0 0.9579
0.0984 1.44 200 0.0442 0.4838 0.9676 0.9676 nan 0.9676 0.0 0.9676
0.4066 1.58 220 0.0384 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0197 1.73 240 0.0567 0.4809 0.9619 0.9619 nan 0.9619 0.0 0.9619
0.068 1.87 260 0.0389 0.4849 0.9698 0.9698 nan 0.9698 0.0 0.9698
0.029 2.01 280 0.0351 0.4853 0.9706 0.9706 nan 0.9706 0.0 0.9706
0.016 2.16 300 0.0373 0.4821 0.9642 0.9642 nan 0.9642 0.0 0.9642
0.0146 2.3 320 0.0367 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0123 2.45 340 0.0388 0.4872 0.9745 0.9745 nan 0.9745 0.0 0.9745
0.1359 2.59 360 0.0360 0.4858 0.9715 0.9715 nan 0.9715 0.0 0.9715
0.0142 2.73 380 0.0337 0.4882 0.9765 0.9765 nan 0.9765 0.0 0.9765
0.012 2.88 400 0.0357 0.4865 0.9731 0.9731 nan 0.9731 0.0 0.9731
0.0101 3.02 420 0.0370 0.4864 0.9728 0.9728 nan 0.9728 0.0 0.9728
0.0098 3.17 440 0.0361 0.4870 0.9740 0.9740 nan 0.9740 0.0 0.9740
0.0226 3.31 460 0.0349 0.4895 0.9791 0.9791 nan 0.9791 0.0 0.9791
0.0157 3.45 480 0.0362 0.4856 0.9712 0.9712 nan 0.9712 0.0 0.9712
0.0145 3.6 500 0.0468 0.4816 0.9632 0.9632 nan 0.9632 0.0 0.9632
0.1801 3.74 520 0.0324 0.4906 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0129 3.88 540 0.0314 0.4910 0.9820 0.9820 nan 0.9820 0.0 0.9820
0.0159 4.03 560 0.0310 0.4904 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0132 4.17 580 0.0321 0.4901 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0126 4.32 600 0.0329 0.4874 0.9747 0.9747 nan 0.9747 0.0 0.9747
0.0156 4.46 620 0.0381 0.4876 0.9751 0.9751 nan 0.9751 0.0 0.9751
0.0147 4.6 640 0.0322 0.4899 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0174 4.75 660 0.0344 0.4886 0.9772 0.9772 nan 0.9772 0.0 0.9772
0.1191 4.89 680 0.0378 0.4863 0.9726 0.9726 nan 0.9726 0.0 0.9726
0.0117 5.04 700 0.0386 0.4873 0.9745 0.9745 nan 0.9745 0.0 0.9745
0.0193 5.18 720 0.0361 0.4909 0.9818 0.9818 nan 0.9818 0.0 0.9818
0.0214 5.32 740 0.0360 0.4886 0.9772 0.9772 nan 0.9772 0.0 0.9772
0.0184 5.47 760 0.0322 0.4905 0.9810 0.9810 nan 0.9810 0.0 0.9810
0.0262 5.61 780 0.0357 0.4907 0.9813 0.9813 nan 0.9813 0.0 0.9813
0.0115 5.76 800 0.0386 0.4887 0.9774 0.9774 nan 0.9774 0.0 0.9774
0.0145 5.9 820 0.0394 0.4879 0.9759 0.9759 nan 0.9759 0.0 0.9759
0.0097 6.04 840 0.0322 0.4889 0.9777 0.9777 nan 0.9777 0.0 0.9777
0.0101 6.19 860 0.0313 0.4895 0.9790 0.9790 nan 0.9790 0.0 0.9790
0.0099 6.33 880 0.0336 0.4876 0.9751 0.9751 nan 0.9751 0.0 0.9751
0.0092 6.47 900 0.0342 0.4894 0.9789 0.9789 nan 0.9789 0.0 0.9789
0.0087 6.62 920 0.0352 0.4913 0.9825 0.9825 nan 0.9825 0.0 0.9825
0.019 6.76 940 0.0516 0.4871 0.9742 0.9742 nan 0.9742 0.0 0.9742
0.0104 6.91 960 0.0364 0.4877 0.9754 0.9754 nan 0.9754 0.0 0.9754
0.0079 7.05 980 0.0300 0.4912 0.9824 0.9824 nan 0.9824 0.0 0.9824
0.0107 7.19 1000 0.0327 0.4939 0.9878 0.9878 nan 0.9878 0.0 0.9878
0.0097 7.34 1020 0.0294 0.4896 0.9793 0.9793 nan 0.9793 0.0 0.9793
0.0359 7.48 1040 0.0321 0.4908 0.9817 0.9817 nan 0.9817 0.0 0.9817
0.0674 7.63 1060 0.0321 0.4916 0.9832 0.9832 nan 0.9832 0.0 0.9832
0.1484 7.77 1080 0.0428 0.4868 0.9737 0.9737 nan 0.9737 0.0 0.9737
0.188 7.91 1100 0.0338 0.4945 0.9890 0.9890 nan 0.9890 0.0 0.9890
0.0124 8.06 1120 0.0345 0.4873 0.9746 0.9746 nan 0.9746 0.0 0.9746
0.011 8.2 1140 0.0350 0.4913 0.9827 0.9827 nan 0.9827 0.0 0.9827
0.0076 8.35 1160 0.0373 0.4884 0.9767 0.9767 nan 0.9767 0.0 0.9767
0.0074 8.49 1180 0.0378 0.4931 0.9862 0.9862 nan 0.9862 0.0 0.9862
0.0757 8.63 1200 0.0364 0.4880 0.9761 0.9761 nan 0.9761 0.0 0.9761
0.0276 8.78 1220 0.0297 0.4906 0.9813 0.9813 nan 0.9813 0.0 0.9813
0.0072 8.92 1240 0.0308 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0061 9.06 1260 0.0308 0.4912 0.9825 0.9825 nan 0.9825 0.0 0.9825
0.0063 9.21 1280 0.0323 0.4894 0.9789 0.9789 nan 0.9789 0.0 0.9789
0.0088 9.35 1300 0.0308 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0129 9.5 1320 0.0295 0.4911 0.9823 0.9823 nan 0.9823 0.0 0.9823
0.0277 9.64 1340 0.0388 0.4876 0.9751 0.9751 nan 0.9751 0.0 0.9751
0.0115 9.78 1360 0.0345 0.4894 0.9787 0.9787 nan 0.9787 0.0 0.9787
0.0129 9.93 1380 0.0394 0.4879 0.9758 0.9758 nan 0.9758 0.0 0.9758
0.0092 10.07 1400 0.0335 0.4916 0.9832 0.9832 nan 0.9832 0.0 0.9832
0.0107 10.22 1420 0.0348 0.4898 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0072 10.36 1440 0.0334 0.4898 0.9796 0.9796 nan 0.9796 0.0 0.9796
0.0081 10.5 1460 0.0409 0.4886 0.9772 0.9772 nan 0.9772 0.0 0.9772
0.0158 10.65 1480 0.0337 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.0058 10.79 1500 0.0364 0.4892 0.9784 0.9784 nan 0.9784 0.0 0.9784
0.0102 10.94 1520 0.0354 0.4916 0.9832 0.9832 nan 0.9832 0.0 0.9832
0.0098 11.08 1540 0.0515 0.4863 0.9726 0.9726 nan 0.9726 0.0 0.9726
0.0063 11.22 1560 0.0337 0.4882 0.9763 0.9763 nan 0.9763 0.0 0.9763
0.0151 11.37 1580 0.0313 0.4905 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0197 11.51 1600 0.0384 0.4893 0.9786 0.9786 nan 0.9786 0.0 0.9786
0.0093 11.65 1620 0.0328 0.4910 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.2493 11.8 1640 0.0413 0.4880 0.9759 0.9759 nan 0.9759 0.0 0.9759
0.0133 11.94 1660 0.0385 0.4877 0.9754 0.9754 nan 0.9754 0.0 0.9754
0.0484 12.09 1680 0.0364 0.4896 0.9792 0.9792 nan 0.9792 0.0 0.9792
0.0074 12.23 1700 0.0334 0.4912 0.9824 0.9824 nan 0.9824 0.0 0.9824
0.0202 12.37 1720 0.0409 0.4876 0.9752 0.9752 nan 0.9752 0.0 0.9752
0.006 12.52 1740 0.0540 0.4860 0.9719 0.9719 nan 0.9719 0.0 0.9719
0.0059 12.66 1760 0.0601 0.4857 0.9714 0.9714 nan 0.9714 0.0 0.9714
0.0083 12.81 1780 0.0348 0.4903 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.011 12.95 1800 0.0402 0.4885 0.9770 0.9770 nan 0.9770 0.0 0.9770
0.045 13.09 1820 0.0322 0.4911 0.9822 0.9822 nan 0.9822 0.0 0.9822
0.043 13.24 1840 0.0331 0.4904 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0061 13.38 1860 0.0314 0.4913 0.9826 0.9826 nan 0.9826 0.0 0.9826
0.0062 13.53 1880 0.0358 0.4890 0.9781 0.9781 nan 0.9781 0.0 0.9781
0.0087 13.67 1900 0.0334 0.4895 0.9790 0.9790 nan 0.9790 0.0 0.9790
0.0106 13.81 1920 0.0341 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0554 13.96 1940 0.0359 0.4881 0.9762 0.9762 nan 0.9762 0.0 0.9762
0.009 14.1 1960 0.0424 0.4865 0.9731 0.9731 nan 0.9731 0.0 0.9731
0.0078 14.24 1980 0.0329 0.4885 0.9770 0.9770 nan 0.9770 0.0 0.9770
0.012 14.39 2000 0.0346 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0064 14.53 2020 0.0362 0.4896 0.9792 0.9792 nan 0.9792 0.0 0.9792
0.0345 14.68 2040 0.0309 0.4919 0.9838 0.9838 nan 0.9838 0.0 0.9838
0.0075 14.82 2060 0.0389 0.4884 0.9768 0.9768 nan 0.9768 0.0 0.9768
0.0066 14.96 2080 0.0337 0.4892 0.9784 0.9784 nan 0.9784 0.0 0.9784
0.0081 15.11 2100 0.0365 0.4897 0.9794 0.9794 nan 0.9794 0.0 0.9794
0.0071 15.25 2120 0.0349 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0054 15.4 2140 0.0388 0.4885 0.9769 0.9769 nan 0.9769 0.0 0.9769
0.4004 15.54 2160 0.0339 0.4909 0.9819 0.9819 nan 0.9819 0.0 0.9819
0.008 15.68 2180 0.0422 0.4896 0.9791 0.9791 nan 0.9791 0.0 0.9791
0.0365 15.83 2200 0.0468 0.4887 0.9774 0.9774 nan 0.9774 0.0 0.9774
0.0067 15.97 2220 0.0416 0.4890 0.9780 0.9780 nan 0.9780 0.0 0.9780
0.0079 16.12 2240 0.0377 0.4908 0.9817 0.9817 nan 0.9817 0.0 0.9817
0.0075 16.26 2260 0.0420 0.4889 0.9779 0.9779 nan 0.9779 0.0 0.9779
0.0063 16.4 2280 0.0422 0.4889 0.9777 0.9777 nan 0.9777 0.0 0.9777
0.0062 16.55 2300 0.0338 0.4912 0.9825 0.9825 nan 0.9825 0.0 0.9825
0.0413 16.69 2320 0.0345 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0411 16.83 2340 0.0387 0.4891 0.9781 0.9781 nan 0.9781 0.0 0.9781
0.0548 16.98 2360 0.0333 0.4936 0.9872 0.9872 nan 0.9872 0.0 0.9872
0.0431 17.12 2380 0.0352 0.4887 0.9773 0.9773 nan 0.9773 0.0 0.9773
0.0069 17.27 2400 0.0327 0.4907 0.9814 0.9814 nan 0.9814 0.0 0.9814
0.0059 17.41 2420 0.0406 0.4881 0.9763 0.9763 nan 0.9763 0.0 0.9763
0.0062 17.55 2440 0.0434 0.4875 0.9750 0.9750 nan 0.9750 0.0 0.9750
0.0064 17.7 2460 0.0350 0.4910 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.0077 17.84 2480 0.0390 0.4894 0.9788 0.9788 nan 0.9788 0.0 0.9788
0.0061 17.99 2500 0.0395 0.4906 0.9813 0.9813 nan 0.9813 0.0 0.9813
0.0073 18.13 2520 0.0370 0.4911 0.9822 0.9822 nan 0.9822 0.0 0.9822
0.0038 18.27 2540 0.0383 0.4893 0.9786 0.9786 nan 0.9786 0.0 0.9786
0.0066 18.42 2560 0.0394 0.4888 0.9776 0.9776 nan 0.9776 0.0 0.9776
0.0232 18.56 2580 0.0384 0.4891 0.9781 0.9781 nan 0.9781 0.0 0.9781
0.0066 18.71 2600 0.0408 0.4887 0.9773 0.9773 nan 0.9773 0.0 0.9773
0.0355 18.85 2620 0.0367 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0048 18.99 2640 0.0366 0.4909 0.9818 0.9818 nan 0.9818 0.0 0.9818
0.0083 19.14 2660 0.0422 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0215 19.28 2680 0.0376 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0315 19.42 2700 0.0370 0.4905 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0061 19.57 2720 0.0380 0.4909 0.9817 0.9817 nan 0.9817 0.0 0.9817
0.0048 19.71 2740 0.0371 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0058 19.86 2760 0.0389 0.4892 0.9785 0.9785 nan 0.9785 0.0 0.9785
0.01 20.0 2780 0.0354 0.4912 0.9824 0.9824 nan 0.9824 0.0 0.9824
0.0051 20.14 2800 0.0380 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0053 20.29 2820 0.0426 0.4889 0.9779 0.9779 nan 0.9779 0.0 0.9779
0.0062 20.43 2840 0.0359 0.4913 0.9827 0.9827 nan 0.9827 0.0 0.9827
0.0573 20.58 2860 0.0370 0.4909 0.9819 0.9819 nan 0.9819 0.0 0.9819
0.0087 20.72 2880 0.0418 0.4899 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0144 20.86 2900 0.0398 0.4905 0.9810 0.9810 nan 0.9810 0.0 0.9810
0.0157 21.01 2920 0.0463 0.4895 0.9789 0.9789 nan 0.9789 0.0 0.9789
0.0063 21.15 2940 0.0357 0.4905 0.9809 0.9809 nan 0.9809 0.0 0.9809
0.0079 21.29 2960 0.0339 0.4928 0.9856 0.9856 nan 0.9856 0.0 0.9856
0.0052 21.44 2980 0.0419 0.4888 0.9775 0.9775 nan 0.9775 0.0 0.9775
0.0068 21.58 3000 0.0370 0.4896 0.9793 0.9793 nan 0.9793 0.0 0.9793
0.0109 21.73 3020 0.0350 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0048 21.87 3040 0.0353 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0053 22.01 3060 0.0369 0.4911 0.9823 0.9823 nan 0.9823 0.0 0.9823
0.006 22.16 3080 0.0339 0.4911 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.0336 22.3 3100 0.0339 0.4914 0.9828 0.9828 nan 0.9828 0.0 0.9828
0.0222 22.45 3120 0.0513 0.4882 0.9764 0.9764 nan 0.9764 0.0 0.9764
0.0072 22.59 3140 0.0328 0.4920 0.9840 0.9840 nan 0.9840 0.0 0.9840
0.0046 22.73 3160 0.0334 0.4907 0.9815 0.9815 nan 0.9815 0.0 0.9815
0.0039 22.88 3180 0.0352 0.4897 0.9794 0.9794 nan 0.9794 0.0 0.9794
0.0059 23.02 3200 0.0359 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0049 23.17 3220 0.0425 0.4881 0.9762 0.9762 nan 0.9762 0.0 0.9762
0.0244 23.31 3240 0.0351 0.4898 0.9796 0.9796 nan 0.9796 0.0 0.9796
0.0047 23.45 3260 0.0339 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.0074 23.6 3280 0.0382 0.4900 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0062 23.74 3300 0.0366 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.0339 23.88 3320 0.0378 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.005 24.03 3340 0.0395 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0038 24.17 3360 0.0455 0.4887 0.9773 0.9773 nan 0.9773 0.0 0.9773
0.008 24.32 3380 0.0389 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0071 24.46 3400 0.0367 0.4909 0.9818 0.9818 nan 0.9818 0.0 0.9818
0.0308 24.6 3420 0.0390 0.4901 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0062 24.75 3440 0.0368 0.4918 0.9837 0.9837 nan 0.9837 0.0 0.9837
0.0062 24.89 3460 0.0378 0.4911 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.006 25.04 3480 0.0413 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0057 25.18 3500 0.0383 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0149 25.32 3520 0.0367 0.4911 0.9822 0.9822 nan 0.9822 0.0 0.9822
0.0185 25.47 3540 0.0409 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0057 25.61 3560 0.0390 0.4897 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.005 25.76 3580 0.0383 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.0109 25.9 3600 0.0379 0.4909 0.9819 0.9819 nan 0.9819 0.0 0.9819
0.0055 26.04 3620 0.0471 0.4883 0.9767 0.9767 nan 0.9767 0.0 0.9767
0.042 26.19 3640 0.0481 0.4877 0.9755 0.9755 nan 0.9755 0.0 0.9755
0.0226 26.33 3660 0.0383 0.4905 0.9809 0.9809 nan 0.9809 0.0 0.9809
0.0143 26.47 3680 0.0402 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.008 26.62 3700 0.0381 0.4908 0.9817 0.9817 nan 0.9817 0.0 0.9817
0.0241 26.76 3720 0.0411 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0055 26.91 3740 0.0386 0.4910 0.9820 0.9820 nan 0.9820 0.0 0.9820
0.0109 27.05 3760 0.0376 0.4913 0.9826 0.9826 nan 0.9826 0.0 0.9826
0.0072 27.19 3780 0.0457 0.4890 0.9781 0.9781 nan 0.9781 0.0 0.9781
0.0048 27.34 3800 0.0512 0.4882 0.9764 0.9764 nan 0.9764 0.0 0.9764
0.006 27.48 3820 0.0430 0.4891 0.9783 0.9783 nan 0.9783 0.0 0.9783
0.0161 27.63 3840 0.0404 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0169 27.77 3860 0.0386 0.4903 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0041 27.91 3880 0.0375 0.4917 0.9835 0.9835 nan 0.9835 0.0 0.9835
0.0068 28.06 3900 0.0381 0.4917 0.9834 0.9834 nan 0.9834 0.0 0.9834
0.0122 28.2 3920 0.0463 0.4893 0.9786 0.9786 nan 0.9786 0.0 0.9786
0.0055 28.35 3940 0.0456 0.4887 0.9774 0.9774 nan 0.9774 0.0 0.9774
0.0048 28.49 3960 0.0398 0.4901 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0126 28.63 3980 0.0401 0.4917 0.9834 0.9834 nan 0.9834 0.0 0.9834
0.0134 28.78 4000 0.0404 0.4910 0.9820 0.9820 nan 0.9820 0.0 0.9820
0.0109 28.92 4020 0.0414 0.4894 0.9787 0.9787 nan 0.9787 0.0 0.9787
0.0479 29.06 4040 0.0409 0.4897 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0061 29.21 4060 0.0422 0.4895 0.9790 0.9790 nan 0.9790 0.0 0.9790
0.0278 29.35 4080 0.0416 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0049 29.5 4100 0.0400 0.4910 0.9820 0.9820 nan 0.9820 0.0 0.9820
0.0438 29.64 4120 0.0390 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.0041 29.78 4140 0.0425 0.4897 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0078 29.93 4160 0.0411 0.4907 0.9813 0.9813 nan 0.9813 0.0 0.9813
0.0057 30.07 4180 0.0375 0.4916 0.9832 0.9832 nan 0.9832 0.0 0.9832
0.0053 30.22 4200 0.0423 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0133 30.36 4220 0.0429 0.4897 0.9794 0.9794 nan 0.9794 0.0 0.9794
0.0045 30.5 4240 0.0454 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0044 30.65 4260 0.0415 0.4901 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.006 30.79 4280 0.0420 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0043 30.94 4300 0.0428 0.4899 0.9797 0.9797 nan 0.9797 0.0 0.9797
0.017 31.08 4320 0.0421 0.4901 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0043 31.22 4340 0.0400 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0061 31.37 4360 0.0383 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0378 31.51 4380 0.0371 0.4913 0.9826 0.9826 nan 0.9826 0.0 0.9826
0.0052 31.65 4400 0.0382 0.4903 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0046 31.8 4420 0.0398 0.4905 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0076 31.94 4440 0.0400 0.4904 0.9809 0.9809 nan 0.9809 0.0 0.9809
0.0062 32.09 4460 0.0396 0.4900 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0152 32.23 4480 0.0399 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0044 32.37 4500 0.0426 0.4902 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0104 32.52 4520 0.0431 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.0041 32.66 4540 0.0458 0.4905 0.9810 0.9810 nan 0.9810 0.0 0.9810
0.0084 32.81 4560 0.0457 0.4896 0.9793 0.9793 nan 0.9793 0.0 0.9793
0.0046 32.95 4580 0.0465 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0038 33.09 4600 0.0422 0.4907 0.9815 0.9815 nan 0.9815 0.0 0.9815
0.0039 33.24 4620 0.0410 0.4912 0.9824 0.9824 nan 0.9824 0.0 0.9824
0.004 33.38 4640 0.0427 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.006 33.53 4660 0.0458 0.4899 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0039 33.67 4680 0.0484 0.4896 0.9792 0.9792 nan 0.9792 0.0 0.9792
0.0065 33.81 4700 0.0516 0.4894 0.9789 0.9789 nan 0.9789 0.0 0.9789
0.0065 33.96 4720 0.0525 0.4893 0.9786 0.9786 nan 0.9786 0.0 0.9786
0.0041 34.1 4740 0.0462 0.4899 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0031 34.24 4760 0.0458 0.4909 0.9817 0.9817 nan 0.9817 0.0 0.9817
0.0039 34.39 4780 0.0493 0.4895 0.9791 0.9791 nan 0.9791 0.0 0.9791
0.0125 34.53 4800 0.0467 0.4902 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0038 34.68 4820 0.0456 0.4899 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0043 34.82 4840 0.0484 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0098 34.96 4860 0.0460 0.4905 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.004 35.11 4880 0.0475 0.4905 0.9810 0.9810 nan 0.9810 0.0 0.9810
0.0087 35.25 4900 0.0460 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0093 35.4 4920 0.0455 0.4897 0.9794 0.9794 nan 0.9794 0.0 0.9794
0.0052 35.54 4940 0.0500 0.4897 0.9794 0.9794 nan 0.9794 0.0 0.9794
0.0045 35.68 4960 0.0482 0.4897 0.9794 0.9794 nan 0.9794 0.0 0.9794
0.0036 35.83 4980 0.0443 0.4906 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0034 35.97 5000 0.0426 0.4911 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.0041 36.12 5020 0.0415 0.4909 0.9818 0.9818 nan 0.9818 0.0 0.9818
0.0043 36.26 5040 0.0450 0.4903 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.007 36.4 5060 0.0467 0.4902 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.006 36.55 5080 0.0463 0.4901 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.006 36.69 5100 0.0468 0.4898 0.9796 0.9796 nan 0.9796 0.0 0.9796
0.0043 36.83 5120 0.0428 0.4905 0.9810 0.9810 nan 0.9810 0.0 0.9810
0.0073 36.98 5140 0.0417 0.4905 0.9809 0.9809 nan 0.9809 0.0 0.9809
0.0188 37.12 5160 0.0418 0.4908 0.9815 0.9815 nan 0.9815 0.0 0.9815
0.0052 37.27 5180 0.0450 0.4907 0.9813 0.9813 nan 0.9813 0.0 0.9813
0.0089 37.41 5200 0.0476 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0041 37.55 5220 0.0505 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0062 37.7 5240 0.0478 0.4895 0.9789 0.9789 nan 0.9789 0.0 0.9789
0.0035 37.84 5260 0.0463 0.4903 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0163 37.99 5280 0.0453 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0054 38.13 5300 0.0462 0.4895 0.9789 0.9789 nan 0.9789 0.0 0.9789
0.0132 38.27 5320 0.0481 0.4892 0.9784 0.9784 nan 0.9784 0.0 0.9784
0.0056 38.42 5340 0.0460 0.4896 0.9792 0.9792 nan 0.9792 0.0 0.9792
0.0054 38.56 5360 0.0449 0.4905 0.9810 0.9810 nan 0.9810 0.0 0.9810
0.0037 38.71 5380 0.0432 0.4911 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.0049 38.85 5400 0.0449 0.4909 0.9818 0.9818 nan 0.9818 0.0 0.9818
0.0044 38.99 5420 0.0448 0.4907 0.9814 0.9814 nan 0.9814 0.0 0.9814
0.0037 39.14 5440 0.0462 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0079 39.28 5460 0.0490 0.4895 0.9789 0.9789 nan 0.9789 0.0 0.9789
0.0033 39.42 5480 0.0494 0.4895 0.9790 0.9790 nan 0.9790 0.0 0.9790
0.0066 39.57 5500 0.0458 0.4897 0.9794 0.9794 nan 0.9794 0.0 0.9794
0.0053 39.71 5520 0.0482 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0044 39.86 5540 0.0483 0.4896 0.9792 0.9792 nan 0.9792 0.0 0.9792
0.0044 40.0 5560 0.0497 0.4897 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0062 40.14 5580 0.0476 0.4894 0.9788 0.9788 nan 0.9788 0.0 0.9788
0.0047 40.29 5600 0.0467 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.006 40.43 5620 0.0444 0.4898 0.9796 0.9796 nan 0.9796 0.0 0.9796
0.0041 40.58 5640 0.0459 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0098 40.72 5660 0.0447 0.4903 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0026 40.86 5680 0.0439 0.4907 0.9814 0.9814 nan 0.9814 0.0 0.9814
0.0043 41.01 5700 0.0466 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0044 41.15 5720 0.0444 0.4901 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0041 41.29 5740 0.0452 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0043 41.44 5760 0.0468 0.4900 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0071 41.58 5780 0.0482 0.4897 0.9793 0.9793 nan 0.9793 0.0 0.9793
0.0187 41.73 5800 0.0463 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0034 41.87 5820 0.0456 0.4901 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0238 42.01 5840 0.0450 0.4907 0.9814 0.9814 nan 0.9814 0.0 0.9814
0.0048 42.16 5860 0.0464 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0116 42.3 5880 0.0475 0.4902 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0039 42.45 5900 0.0475 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0042 42.59 5920 0.0446 0.4905 0.9809 0.9809 nan 0.9809 0.0 0.9809
0.0069 42.73 5940 0.0441 0.4905 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0045 42.88 5960 0.0460 0.4905 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0038 43.02 5980 0.0501 0.4896 0.9791 0.9791 nan 0.9791 0.0 0.9791
0.0123 43.17 6000 0.0490 0.4898 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0079 43.31 6020 0.0471 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.004 43.45 6040 0.0453 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.0145 43.6 6060 0.0439 0.4910 0.9820 0.9820 nan 0.9820 0.0 0.9820
0.0038 43.74 6080 0.0466 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.004 43.88 6100 0.0467 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0044 44.03 6120 0.0480 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0193 44.17 6140 0.0458 0.4902 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0036 44.32 6160 0.0470 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0042 44.46 6180 0.0456 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0031 44.6 6200 0.0454 0.4904 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0117 44.75 6220 0.0478 0.4901 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0036 44.89 6240 0.0482 0.4900 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0036 45.04 6260 0.0506 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0052 45.18 6280 0.0485 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0035 45.32 6300 0.0496 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0056 45.47 6320 0.0494 0.4902 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0172 45.61 6340 0.0482 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0041 45.76 6360 0.0484 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0034 45.9 6380 0.0492 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0108 46.04 6400 0.0481 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0054 46.19 6420 0.0474 0.4905 0.9810 0.9810 nan 0.9810 0.0 0.9810
0.0102 46.33 6440 0.0483 0.4902 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0036 46.47 6460 0.0493 0.4903 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0057 46.62 6480 0.0496 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.003 46.76 6500 0.0504 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0057 46.91 6520 0.0492 0.4901 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0048 47.05 6540 0.0524 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.004 47.19 6560 0.0500 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0218 47.34 6580 0.0502 0.4899 0.9798 0.9798 nan 0.9798 0.0 0.9798
0.0038 47.48 6600 0.0532 0.4896 0.9792 0.9792 nan 0.9792 0.0 0.9792
0.0029 47.63 6620 0.0496 0.4898 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0035 47.77 6640 0.0508 0.4898 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0049 47.91 6660 0.0501 0.4900 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0056 48.06 6680 0.0488 0.4907 0.9814 0.9814 nan 0.9814 0.0 0.9814
0.0182 48.2 6700 0.0482 0.4899 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0056 48.35 6720 0.0494 0.4903 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0029 48.49 6740 0.0501 0.4902 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0076 48.63 6760 0.0480 0.4901 0.9802 0.9802 nan 0.9802 0.0 0.9802
0.0042 48.78 6780 0.0514 0.4902 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0069 48.92 6800 0.0483 0.4901 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0144 49.06 6820 0.0472 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0041 49.21 6840 0.0491 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0034 49.35 6860 0.0481 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0117 49.5 6880 0.0482 0.4904 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0042 49.64 6900 0.0499 0.4899 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0057 49.78 6920 0.0507 0.4902 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0183 49.93 6940 0.0494 0.4900 0.9799 0.9799 nan 0.9799 0.0 0.9799

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
14
Safetensors
Model size
47.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Aassemtkt/segformer-b3-finetuned-drugs-in-bins-nov-23

Base model

nvidia/mit-b3
Finetuned
(12)
this model