haLLAwa3 / README.md
solankibhargav's picture
Adding Evaluation Results (#1)
5316ff2 verified
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - openchat/openchat-3.5-0106
  - machinists/Mistral-7B-SQL
model-index:
  - name: haLLAwa3
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 67.83
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AbacusResearch/haLLAwa3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 87.02
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AbacusResearch/haLLAwa3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.23
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AbacusResearch/haLLAwa3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 63.71
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AbacusResearch/haLLAwa3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.51
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AbacusResearch/haLLAwa3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.75
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AbacusResearch/haLLAwa3
          name: Open LLM Leaderboard

image/png

Hallawa3: The Fusion of Expertise and Precision for 7B Models"

Unveiling 'Hallawa', an AI marvel that embodies the perfect blend of expert knowledge and cutting-edge technology, tailored for 7B models where direct answers are paramount. This AI powerhouse excels in delivering precise responses, ideal for use cases that demand accuracy and immediacy. Excelling in document understanding and prompts in its size. With 'Hallawa', you tap into a repository of intelligence that's been acknowledged by over 1400 downloads on the OpenLLM leaderboard, boasting a remarkable score of 71. This model isn't just about quantity but quality, setting new benchmarks in the realm of language models.

Whether you're looking to enhance customer service, drive research, or accelerate decision-making, 'Hallawa' stands as your go-to solution, engineered to exceed expectations in scenarios where only the most accurate and immediate answers will suffice. Join the ranks of those leveraging 'Hallawa' for their most critical applications and witness the transformation it brings to your operations. haLLAwa3 is a merge of the following models using mergekit:

🧩 Configuration

slices:
  - sources:
      - model: openchat/openchat-3.5-0106
        layer_range: [0, 32]
      - model: machinists/Mistral-7B-SQL
        layer_range: [0, 32]
merge_method: slerp
base_model: openchat/openchat-3.5-0106
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.34
AI2 Reasoning Challenge (25-Shot) 67.83
HellaSwag (10-Shot) 87.02
MMLU (5-Shot) 64.23
TruthfulQA (0-shot) 63.71
Winogrande (5-shot) 80.51
GSM8k (5-shot) 64.75