metadata
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_pipeline
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9516472935
- name: NER Recall
type: recall
value: 0.9483207676
- name: NER F Score
type: f_score
value: 0.9499811185
Feature | Description |
---|---|
Name | en_pipeline |
Version | 0.0.0 |
spaCy | >=3.5.2,<3.6.0 |
Default Pipeline | transformer , ner |
Components | transformer , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (12 labels for 1 components)
Component | Labels |
---|---|
ner |
CITY , COMPANY , DEGREE , DESIGNATION , DOB , EMAIL , EXPERIENCE , INSTITUTE , LINKEDIN , MOBILE NUMBER , NAME , SKILLS |
Accuracy
Type | Score |
---|---|
ENTS_F |
95.00 |
ENTS_P |
95.16 |
ENTS_R |
94.83 |
TRANSFORMER_LOSS |
448284.92 |
NER_LOSS |
122909.16 |