Visualize in Weights & Biases

lettuce-npk-vit

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1492
  • Accuracy: 0.9524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1633 0.992 31 1.1239 0.8571
0.4802 1.984 62 0.4213 0.9048
0.1386 2.976 93 0.2501 0.9524
0.1003 4.0 125 0.1879 0.9524
0.0871 4.992 156 0.3482 0.8571
0.0702 5.984 187 0.2048 0.9524
0.0594 6.976 218 0.2824 0.9048
0.0425 8.0 250 0.2567 0.9524
0.0398 8.992 281 0.3363 0.8571
0.0348 9.984 312 0.2518 0.9524
0.0411 10.9760 343 0.0369 1.0
0.0445 12.0 375 0.2288 0.9524
0.0353 12.992 406 0.2364 0.8571
0.0384 13.984 437 0.2255 0.9524
0.0331 14.9760 468 0.0572 1.0
0.0252 16.0 500 0.2103 0.9524
0.0337 16.992 531 0.0295 1.0
0.0302 17.984 562 0.2805 0.9048
0.0328 18.976 593 0.2127 0.9524
0.0315 19.84 620 0.1492 0.9524

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
34
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AbdoulayeDIOP/lettuce-npk-vit

Finetuned
(1775)
this model

Space using AbdoulayeDIOP/lettuce-npk-vit 1

Evaluation results