|
#include <ATen/core/Tensor.h> |
|
#include <ATen/div_rtn.h> |
|
#include <ATen/TensorUtils.h> |
|
#include <ATen/native/DispatchStub.h> |
|
#include <c10/util/irange.h> |
|
|
|
#pragma once |
|
|
|
namespace at { |
|
namespace native { |
|
|
|
using max_pool2d_fn = void(*)(const Tensor& output, const Tensor& indices, const Tensor& input, |
|
int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH); |
|
using max_pool2d_backward_fn = void(*)(const Tensor& grad_input, const Tensor& grad_output, const Tensor& indices); |
|
|
|
DECLARE_DISPATCH(max_pool2d_fn, max_pool2d_kernel); |
|
DECLARE_DISPATCH(max_pool2d_backward_fn, max_pool2d_backward_kernel); |
|
|
|
|
|
using avg_pool2d_fn = void(*)(const Tensor& output, const Tensor& input, int64_t kW, int64_t kH, |
|
int64_t dW, int64_t dH, int64_t padW, int64_t padH, bool count_include_pad, c10::optional<int64_t> divisor_override); |
|
using avg_pool2d_backward_fn = void(*)(const Tensor& output, const Tensor& input, int kW, int kH, |
|
int dW, int dH, int padW, int padH, bool count_include_pad, c10::optional<int64_t> divisor_override); |
|
|
|
DECLARE_DISPATCH(avg_pool2d_fn, avg_pool2d_kernel); |
|
DECLARE_DISPATCH(avg_pool2d_backward_fn, avg_pool2d_backward_kernel); |
|
|
|
namespace { |
|
|
|
template <typename dest_t, typename src_t> |
|
static inline dest_t |
|
safe_downcast(src_t v) |
|
{ |
|
TORCH_CHECK(std::numeric_limits<dest_t>::min() <= v && v <= std::numeric_limits<dest_t>::max(), |
|
"integer out of range"); |
|
|
|
return static_cast<dest_t>(v); |
|
} |
|
|
|
template<typename T> |
|
static inline T pooling_output_shape_pad_lr( |
|
T inputSize, T kernelSize, T pad_l, T pad_r, T stride, T dilation, |
|
bool ceil_mode) { |
|
T outputSize = div_rtn<T>( |
|
inputSize + pad_l + pad_r - dilation * (kernelSize - 1) - 1 + |
|
(ceil_mode ? stride - 1 : 0), stride) + 1; |
|
if (ceil_mode) { |
|
|
|
|
|
if ((outputSize - 1) * stride >= inputSize + pad_l) { |
|
--outputSize; |
|
} |
|
} |
|
return outputSize; |
|
} |
|
|
|
template<typename T> |
|
static inline T pooling_output_shape( |
|
T inputSize, T kernelSize, T pad, T stride, T dilation, bool ceil_mode) { |
|
TORCH_CHECK(stride != 0, "stride should not be zero"); |
|
TORCH_CHECK(pad >= 0, |
|
"pad must be non-negative, but got pad: ", pad); |
|
TORCH_CHECK(pad <= kernelSize / 2, |
|
"pad should be at most half of kernel size, but got pad=", |
|
pad, " and kernel_size=", kernelSize) |
|
return pooling_output_shape_pad_lr( |
|
inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode); |
|
} |
|
|
|
inline std::pair<int64_t, int64_t> pooling_same_mode_padding_lr( |
|
int64_t inputSize, int64_t kernelSize, int64_t stride, int64_t dilation) { |
|
|
|
auto total_padding = dilation * (kernelSize - 1); |
|
|
|
|
|
if (stride > 2 && (total_padding % 2 == 1)) { |
|
|
|
auto wiggle_room = inputSize % stride - 1; |
|
if (wiggle_room > 0) { |
|
--total_padding; |
|
} |
|
} |
|
|
|
auto left = total_padding / 2; |
|
return {left, total_padding - left}; |
|
} |
|
|
|
|
|
|
|
static inline void |
|
pool2d_shape_check( |
|
const Tensor& input, |
|
int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW, |
|
int64_t nInputPlane, |
|
int64_t inputHeight, int64_t inputWidth, |
|
int64_t outputHeight, int64_t outputWidth, MemoryFormat memory_format) |
|
{ |
|
const int64_t ndim = input.ndimension(); |
|
const int64_t nOutputPlane = nInputPlane; |
|
|
|
TORCH_CHECK(kW > 0 && kH > 0, |
|
"kernel size should be greater than zero, but got ", |
|
"kH: ", kH, " kW: ", kW); |
|
TORCH_CHECK(dW > 0 && dH > 0, |
|
"stride should be greater than zero, but got " |
|
"dH: ", dH, " dW: ", dW); |
|
TORCH_CHECK(dilationH > 0 && dilationW > 0, |
|
"dilation should be greater than zero, but got ", |
|
"dilationH: ", dilationH, " dilationW: ", dilationW); |
|
|
|
bool valid_dims = input.size(1) != 0 && input.size(2) != 0; |
|
if (memory_format == at::MemoryFormat::ChannelsLast){ |
|
|
|
TORCH_CHECK((ndim == 4 && valid_dims && input.size(3) != 0), |
|
"Expected 4D (batch mode) tensor expected for input with channels_last layout" |
|
" with optional 0 dim batch size for input, but got: ", input.sizes()); |
|
} else { |
|
TORCH_CHECK((ndim == 3 && input.size(0) != 0 && valid_dims) || |
|
(ndim == 4 && valid_dims && input.size(3) != 0), |
|
"Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got:", |
|
input.sizes()); |
|
} |
|
|
|
TORCH_CHECK(kW/2 >= padW && kH/2 >= padH, |
|
"pad should be smaller than or equal to half of kernel size, but got ", |
|
"padW = ", padW, ", padH = ", padH, ", kW = ", kW, ", kH = ", kH); |
|
|
|
TORCH_CHECK(outputWidth >= 1 && outputHeight >= 1, |
|
"Given input size: (", |
|
nInputPlane, "x", inputHeight, "x", inputWidth, "). ", |
|
"Calculated output size: (", |
|
nOutputPlane, "x", outputHeight, "x", outputWidth, "). ", |
|
"Output size is too small"); |
|
} |
|
|
|
|
|
static inline void |
|
max_pool2d_backward_shape_check( |
|
const Tensor& input, |
|
const Tensor& gradOutput, |
|
const Tensor& indices, |
|
int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW, |
|
int64_t nInputPlane, |
|
int64_t inputHeight, int64_t inputWidth, |
|
int64_t outputHeight, int64_t outputWidth, MemoryFormat memory_format) |
|
{ |
|
pool2d_shape_check( |
|
input, |
|
kH, kW, dH, dW, padH, padW, dilationH, dilationW, |
|
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format); |
|
|
|
const int64_t ndim = input.ndimension(); |
|
const int64_t nOutputPlane = nInputPlane; |
|
|
|
check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane); |
|
check_dim_size(gradOutput, ndim, ndim-2, outputHeight); |
|
check_dim_size(gradOutput, ndim, ndim-1, outputWidth); |
|
|
|
check_dim_size(indices, ndim, ndim-3, nOutputPlane); |
|
check_dim_size(indices, ndim, ndim-2, outputHeight); |
|
check_dim_size(indices, ndim, ndim-1, outputWidth); |
|
} |
|
|
|
|
|
static inline void |
|
avg_pool2d_backward_shape_check( |
|
const Tensor& input, |
|
const Tensor& gradOutput, |
|
int64_t , |
|
int kH, int kW, int dH, int dW, int padH, int padW, |
|
int64_t nInputPlane, |
|
int64_t inputHeight, int64_t inputWidth, |
|
int64_t outputHeight, int64_t outputWidth, |
|
MemoryFormat memory_format) |
|
{ |
|
pool2d_shape_check( |
|
input, |
|
kH, kW, dH, dW, padH, padW, 1, 1, |
|
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, |
|
memory_format); |
|
|
|
const int64_t ndim = input.ndimension(); |
|
const int64_t nOutputPlane = nInputPlane; |
|
|
|
check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane); |
|
check_dim_size(gradOutput, ndim, ndim-2, outputHeight); |
|
check_dim_size(gradOutput, ndim, ndim-1, outputWidth); |
|
} |
|
|
|
|
|
static inline void |
|
pool3d_shape_check( |
|
const Tensor& input, |
|
int64_t nslices, |
|
int kT, int kH, int kW, |
|
int dT, int dH, int dW, |
|
int pT, int pH, int pW, |
|
int dilationT, int dilationH, int dilationW, |
|
int64_t itime, int64_t iheight, int64_t iwidth, |
|
int64_t otime, int64_t oheight, int64_t owidth, |
|
const char *fn_name, |
|
bool check_input_size=false) |
|
{ |
|
const int64_t ndim = input.ndimension(); |
|
|
|
TORCH_CHECK(kT > 0 && kW > 0 && kH > 0, |
|
"kernel size should be greater than zero, but got ", |
|
"kT: ", kT, " kH: ", kH, " kW: ", kW); |
|
TORCH_CHECK(dT > 0 && dW > 0 && dH > 0, |
|
"stride should be greater than zero, but got ", |
|
"dT: ", dT, " dH: ", dH, " dW: ", dW); |
|
TORCH_CHECK(dilationT > 0 && dilationW > 0 && dilationH > 0, |
|
"dilation should be greater than zero, but got ", |
|
"dilationT: ", dilationT, " dilationH: ", dilationH, " dilationW: ", dilationW); |
|
|
|
TORCH_CHECK(ndim == 4 || ndim == 5, |
|
fn_name, ": Expected 4D or 5D tensor for input, but got: ", input.sizes()); |
|
|
|
for (const auto i : c10::irange(ndim)) { |
|
if (ndim == 5 && i == 0) { |
|
|
|
continue; |
|
} |
|
TORCH_CHECK( |
|
input.size(i) > 0, |
|
fn_name, |
|
": Expected input's non-batch dimensions to have positive length," |
|
" but input has a shape of ", |
|
input.sizes(), |
|
" and non-batch dimension ", |
|
input.size(i), |
|
" has length zero!") |
|
} |
|
|
|
if (check_input_size) { |
|
TORCH_CHECK(itime >= kT && iheight >= kH && iwidth >= kW, |
|
"input image ", "(T: ", itime, " H: ", iheight, " W: ", iwidth, ") smaller than ", |
|
"kernel size ", "(kT: ", kT, " kH: ", kH, " kW: ", kW, ")"); |
|
} |
|
|
|
TORCH_CHECK(kT/2 >= pT && kW/2 >= pW && kH/2 >= pH, |
|
"pad should be smaller than or equal to half of kernel size, but got " |
|
"kT: ", kT, " kW: ", kW, " kH: ", kH, " padT: ", pT, " padW: ", pW, " padH: ", pH); |
|
|
|
TORCH_CHECK(otime >= 1 && owidth >= 1 && oheight >= 1, |
|
"Given input size: (", |
|
nslices,"x", itime, "x", iheight, "x", iwidth, "). ", |
|
"Calculated output size: (", |
|
nslices, "x", otime, "x", oheight, "x", owidth, "). ", |
|
"Output size is too small"); |
|
} |
|
|
|
static inline void |
|
max_pool3d_backward_shape_check( |
|
const Tensor& input, |
|
const Tensor& gradOutput, |
|
const Tensor& indices, |
|
int64_t nslices, |
|
int kT, int kH, int kW, |
|
int dT, int dH, int dW, |
|
int pT, int pH, int pW, |
|
int dilationT, int dilationH, int dilationW, |
|
int64_t itime, int64_t iheight, int64_t iwidth, |
|
int64_t otime, int64_t oheight, int64_t owidth, |
|
const char* fn_name) |
|
{ |
|
const int64_t ndim = input.ndimension(); |
|
|
|
pool3d_shape_check( |
|
input, |
|
nslices, |
|
kT, kH, kW, |
|
dT, dH, dW, |
|
pT, pH, pW, |
|
dilationT, dilationH, dilationW, |
|
itime, iheight, iwidth, |
|
otime, oheight, owidth, fn_name); |
|
|
|
check_dim_size(gradOutput, ndim, ndim-4, nslices); |
|
check_dim_size(gradOutput, ndim, ndim-3, otime); |
|
check_dim_size(gradOutput, ndim, ndim-2, oheight); |
|
check_dim_size(gradOutput, ndim, ndim-1, owidth); |
|
|
|
check_dim_size(indices, ndim, ndim-4, nslices); |
|
check_dim_size(indices, ndim, ndim-3, otime); |
|
check_dim_size(indices, ndim, ndim-2, oheight); |
|
check_dim_size(indices, ndim, ndim-1, owidth); |
|
} |
|
|
|
static inline void |
|
avg_pool3d_backward_shape_check( |
|
const Tensor& input, |
|
const Tensor& gradOutput, |
|
int64_t nslices, |
|
int kT, int kH, int kW, |
|
int dT, int dH, int dW, |
|
int pT, int pH, int pW, |
|
int64_t itime, int64_t iheight, int64_t iwidth, |
|
int64_t otime, int64_t oheight, int64_t owidth, |
|
const char *fn_name) |
|
{ |
|
const int64_t ndim = input.ndimension(); |
|
|
|
pool3d_shape_check( |
|
input, |
|
nslices, |
|
kT, kH, kW, |
|
dT, dH, dW, |
|
pT, pH, pW, |
|
1, 1, 1, |
|
itime, iheight, iwidth, |
|
otime, oheight, owidth, |
|
fn_name, true); |
|
|
|
check_dim_size(gradOutput, ndim, ndim-4, nslices); |
|
check_dim_size(gradOutput, ndim, ndim-3, otime); |
|
check_dim_size(gradOutput, ndim, ndim-2, oheight); |
|
check_dim_size(gradOutput, ndim, ndim-1, owidth); |
|
} |
|
|
|
} |
|
|
|
} |
|
} |
|
|